
Targeting Past and Present Keylogging Techniques

Asuka Nakajima | 中島 明日香

Senior Security Research Engineer @

Windows Keylogger Detection

Asuka Nakajima

❖ Senior Security Research Engineer @ Elastic
✓ Endpoint Protections Team

✓ Endpoint Security R&D, especially developing

new detection features for EDR Elastic Defend)

✓ 10+ years of experience in cyber security R&D

❖ Founder of CTF for GIRLS (est. 2014
✓ First female infosec community in Japan

❖ Review Board Member
✓ BlackHat USA / BlackHat Asia / CODE BLUE

नमस्ते / Hello! 😊

 Keyloggers: Still Used in Todayʼs Cyber Attacks

❖ What is a keylogger ? 🤔
✓ Software that records keystrokes

✓ Often misused by malware / malicious actors to steal sensitive data
○ Has been used for a long time and is still being found in malware today (e.g., Agent Tesla)

❖ What are the risks ?🤔
✓ e.g., Stolen data may be used for financial theft or further cyber attacks.

 Early detection is crucial to prevent subsequent attacks

Password Credit Card Confidential Data

while(true)
{
 for (int key = 1; key <= 255; key++)
 {
 if (GetAsyncKeyState(key) & 0x01)
 {
 SaveTheKey(key, "log.txt");
 }
 }
 Sleep(50);
}

Hardware
Keyloggers

Software
Keyloggers

Types of Keyloggers

while(true)
{
 for (int key = 1; key <= 255; key++)
 {
 if (GetAsyncKeyState(key) & 0x01)
 {
 SaveTheKey(key, "log.txt");
 }
 }
 Sleep(50);
}

Hardware
Keyloggers

Software
Keyloggers

Types of Keyloggers

while(true)
{
 for (int key = 1; key <= 255; key++)
 {
 if (GetAsyncKeyState(key) & 0x01)
 {
 SaveTheKey(key, "log.txt");
 }
 }
 Sleep(50);
}

Hardware
Keyloggers

Software
Keyloggers

Windows API-based user mode
keyloggers and their detection

 💡This talk focuses on

Types of Keyloggers

 About Todayʼs Talk

Part

A

Part

B Hotkey-based Keylogger Detection

💡Sharing my experience of adding a keylogger behavioral detection feature to an EDR

Detecting Common Types of Keyloggers Through
Windows API Monitoring

 About Todayʼs Talk

Part

A

Part

B Hotkey-based Keylogger Detection

Detecting Common Types of Keyloggers Through
Windows API Monitoring 👈
💡Sharing my experience of adding a keylogger behavioral detection feature to an EDR

 Four Common Types of Windows API-based User-mode Keyloggers

✅ Polling-based Keyloggers
✅ Hooking-based Keyloggers
✅ Keyloggers using Raw Input Model
✅ Keyloggers using DirectInput 😈
 To detect them, we must first understand how they work

keyboard Note: All information in this talk is based on Windows 10 version 22H2 OS Build 19045.5371 without virtualization
-based security. Please note that internal data structures and behavior may differ in other versions of Windows.

keyboard USB

 Async Key State Array
(per session)

User-mode

Kernel-mode

 Simplified Diagram of the Key Input Flow from Keyboard to Application Windows)

 HID Keyboard Report
Usage ID

UI Thread Message Queue

Window Message
(eg. WM_KEYDOWN

Message
loop

Window
Procedure

(eg.show
typed keys)App A

Device Drivers

win32k.sys
Raw Input Thread)

kbdclass.sys

Virtual-Key
Code (eg. VK_A

while(GetMessage() or PeekMessage()) {
TranslateMessage()
DispatchMessage()

}

Window
Procedure

 System Hardware Input Queue

App B

Original Legacy
Input Model

kbdxxx.dll
kbdxxx.dll

kbdxxx.dll

 Keyboard layout DLLs

Scan Code USB Keyboard) Driver Stack
(e.g.hidclass.sys/ kbdhid.sys)

keyboard USB

 Async Key State Array
(per session)

User-mode

Kernel-mode

 Simplified Diagram of the Key Input Flow from Keyboard to Application Windows)

 HID Keyboard Report
Usage ID

UI Thread Message Queue

Window Message
(eg. WM_KEYDOWN

Message
loop

Window
Procedure

(eg.show
typed keys)App A

Device Drivers

win32k.sys
Raw Input Thread)

kbdclass.sys

Virtual-Key
Code (eg. VK_A

while(GetMessage() or PeekMessage()) {
TranslateMessage()
DispatchMessage()

}

Window
Procedure

 System Hardware Input Queue

App B

Original Legacy
Input Model

kbdxxx.dll
kbdxxx.dll

kbdxxx.dll

 Keyboard layout DLLs

Scan Code USB Keyboard) Driver Stack
(e.g.hidclass.sys/ kbdhid.sys)

keyboard USB

 Async Key State Array
(per session)

User-mode

Kernel-mode

 Simplified Diagram of the Key Input Flow from Keyboard to Application Windows)

 HID Keyboard Report
Usage ID

UI Thread Message Queue

Window Message
(eg. WM_KEYDOWN

Message
loop

Window
Procedure

(eg.show
typed keys)App A

Device Drivers

win32k.sys
Raw Input Thread)

kbdclass.sys

Virtual-Key
Code (eg. VK_A

while(GetMessage() or PeekMessage()) {
TranslateMessage()
DispatchMessage()

}

Window
Procedure

 System Hardware Input Queue

App B

Original Legacy
Input Model

kbdxxx.dll
kbdxxx.dll

kbdxxx.dll

 Keyboard layout DLLs

Scan Code USB Keyboard) Driver Stack
(e.g.hidclass.sys/ kbdhid.sys)

keyboard USB

 Async Key State Array
(per session)

User-mode

Kernel-mode

 Simplified Diagram of the Key Input Flow from Keyboard to Application Windows)

 HID Keyboard Report
Usage ID

UI Thread Message Queue

Window Message
(eg. WM_KEYDOWN

Message
loop

Window
Procedure

(eg.show
typed keys)App A

Device Drivers

win32k.sys
Raw Input Thread)

kbdclass.sys

Virtual-Key
Code (eg. VK_A

while(GetMessage() or PeekMessage()) {
TranslateMessage()
DispatchMessage()

}

Window
Procedure

 System Hardware Input Queue

App B

Original Legacy
Input Model

kbdxxx.dll
kbdxxx.dll

kbdxxx.dll

 Keyboard layout DLLs

Scan Code USB Keyboard) Driver Stack
(e.g.hidclass.sys/ kbdhid.sys)

keyboard USB

 Async Key State Array
(per session)

User-mode

Kernel-mode

 Simplified Diagram of the Key Input Flow from Keyboard to Application Windows)

 HID Keyboard Report
Usage ID

UI Thread Message Queue

Window Message
(eg. WM_KEYDOWN

Message
loop

Window
Procedure

(eg.show
typed keys)App A

Device Drivers

win32k.sys
Raw Input Thread)

kbdclass.sys

Virtual-Key
Code (eg. VK_A

while(GetMessage() or PeekMessage()) {
TranslateMessage()
DispatchMessage()

}

Window
Procedure

 System Hardware Input Queue

App B

Original Legacy
Input Model

kbdxxx.dll
kbdxxx.dll

kbdxxx.dll

 Keyboard layout DLLs

Scan Code USB Keyboard) Driver Stack
(e.g.hidclass.sys/ kbdhid.sys)

Four Common Types of Windows
API-based User-mode Keyloggers Polling-based Keylogger

while(true)
{
 for (int key = 1; key <= 255; key++)
 {
 if (GetAsyncKeyState(key) & 0x01)
 {
 SaveTheKey(key, "log.txt");
 }
 }
 Sleep(50);
}

Example Code
keyboard

👉 Key press

keyboard

Check whether each key has been pressed

　　The J key
was pressed!

GetAsyncKeyState API https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getasynckeystate

Periodically checks each key state on the keyboard at very short intervals.
The GetAsyncKeyState API is commonly used for this.

How It Captures Keystrokes

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getasynckeystate

keyboard USB

 Async Key State Array
(per session)

User-mode

Kernel-mode

 Simplified Diagram of the Key Input Flow from Keyboard to Application Windows)

 HID Keyboard Report
Usage ID

UI Thread Message Queue

Window Message
(eg. WM_KEYDOWN

Message
loop

Window
Procedure

(eg.show
typed keys)App A

Device Drivers

win32k.sys
Raw Input Thread)

kbdclass.sys

Virtual-Key
Code (eg. VK_A

while(GetMessage() or PeekMessage()) {
TranslateMessage()
DispatchMessage()

}

Window
Procedure

 System Hardware Input Queue

App B

Original Legacy
Input Model

kbdxxx.dll
kbdxxx.dll

kbdxxx.dll

 Keyboard layout DLLs

Scan Code

In the background, this Async Key State Array
in the kernel side is being checked

USB Keyboard) Driver Stack
(e.g.hidclass.sys/ kbdhid.sys)

👈

Four Common Types of Windows
API-based User-mode Keyloggers Hooking-based Keylogger

Windows provides a hooking mechanism that allows programs to intercept
certain window messages before they reach their intended application.

How It Captures Keystrokes

Example Code

 HMODULE hHookLibrary = LoadLibraryW(L"hook.dll");
 FARPROC hookFunc = GetProcAddress(hHookLibrary, "SaveTheKey");

 HHOOK keyboardHook = NULL;
 keyboardHook = SetWindowsHookEx(WH_KEYBOARD_LL, (HOOKPROC)hookFunc, hHookLibrary, 0);

Example.
WM_KEYDOWN
WM_KEYUP SetWindowsHookEx API provides this feature

SetWindowsHookEx API https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowshookexw

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowshookexw

keyboard USB

 Async Key State Array
(per session)

User-mode

Kernel-mode

 Simplified Diagram of the Key Input Flow from Keyboard to Application Windows)

 HID Keyboard Report
Usage ID

UI Thread Message Queue

Window Message
(eg. WM_KEYDOWN

Message
loop

Window
Procedure

(eg.show
typed keys)App A

Device Drivers

win32k.sys
Raw Input Thread)

kbdclass.sys

Virtual-Key
Code (eg. VK_A

while(GetMessage() or PeekMessage()) {
TranslateMessage()
DispatchMessage()

}

Window
Procedure

 System Hardware Input Queue

App B

Original Legacy
Input Model

kbdxxx.dll
kbdxxx.dll

kbdxxx.dll

 Keyboard layout DLLs

Scan Code

👈
In the background, it hooks (intercepts) keys

before posting them to the target message queue

USB Keyboard) Driver Stack
(e.g.hidclass.sys/ kbdhid.sys)

Four Common Types of Windows
API-based User-mode Keyloggers Keylogger using Raw Input Model

Input Model on Windows

❖ Original Input Model
✓ The data entered from input devices like keyboards is processed by

the OS before it is delivered to the target application.

❖ Raw Input Model
✓ The data entered from input devices is received directly by the target

application without any intermediate processing by the OS.

💡Raw keyboard input is sent to the application when the Raw Input Model is used.
About Raw Input: https://learn.microsoft.com/en-us/windows/win32/inputdev/about-raw-input

https://learn.microsoft.com/en-us/windows/win32/inputdev/about-raw-input

Four Common Types of Windows
API-based User-mode Keyloggers Keylogger using Raw Input Model

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMessage, WPARAM wParam, LPARAM lParam) {
 UINT dwSize = 0;
 RAWINPUT* buffer = NULL;

 switch (uMessage) {
 case WM_CREATE:
 RAWINPUTDEVICE rid;
 rid.usUsagePage = 0x01; // HID_USAGE_PAGE_GENERIC
 rid.usUsage = 0x06; 　 // HID_USAGE_GENERIC_KEYBOARD
 rid.dwFlags = RIDEV_INPUTSINK;
 rid.hwndTarget = hWnd;
 RegisterRawInputDevices(&rid, 1, sizeof(rid));
 break;
-[continues to the next page]-

Example Code 1/2

How It Captures Keystrokes

This type of keylogger captures and records
raw input data obtained from input devices like keyboards.

RegisterRawInputDevices API https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-registerrawinputdevices

RegisterRawInputDevices API,
registers the devices that supply
raw input data.

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-registerrawinputdevices

Four Common Types of Windows
API-based User-mode Keyloggers Keylogger using Raw Input Model

 case WM_INPUT:
 GetRawInputData((HRAWINPUT)lParam, RID_INPUT, NULL, &dwSize, sizeof(RAWINPUTHEADER));
 buffer = (RAWINPUT*)HeapAlloc(GetProcessHeap(), 0, dwSize);

 if (GetRawInputData((HRAWINPUT)lParam, RID_INPUT, buffer, &dwSize, sizeof(RAWINPUTHEADER))){
 if (buffer->header.dwType == RIM_TYPEKEYBOARD){
 SaveTheKey(buffer, "log.txt");
 }
 }
 HeapFree(GetProcessHeap(), 0, buffer);
 break;
 default:
 return DefWindowProc(hWnd, uMessage, wParam, lParam);
 }
 return 0;
}

Example Code 2/2

GetRawInputData API retrieves raw
input from the registered device

GetRawInputData API https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getrawinputdata

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getrawinputdata

Four Common Types of Windows
API-based User-mode Keyloggers Keylogger using DirectInput

What is DirectInput ?

DirectInput: https://learn.microsoft.com/en-us/previous-versions/windows/desktop/ee416842(v=vs.85
DirectInput8Create: https://learn.microsoft.com/en-us/previous-versions/windows/desktop/ee416756(v=vs.85
IDirectInputDevice8Acquire:https://learn.microsoft.com/en-us/previous-versions/windows/desktop/ee417818(v=vs.85
IDirectInputDevice8GetDeviceState:https://learn.microsoft.com/en-us/previous-versions/windows/desktop/ee417897(v=vs.85

❖ One of the components of Microsoft DirectX API
✓ e.g., DirectInput, DirectShow, DirectAudio, etc.

❖ DirectInput can retrieve the keyboard state using APIs such as the following
✓ DirectInput8Create

✓ IDirectInputDevice8Acquire

✓ IDirectInputDevice8GetDeviceState

A collection of APIs used for handling
multimedia tasks such as gaming and video

https://learn.microsoft.com/en-us/previous-versions/windows/desktop/ee416842(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/ee416756(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/ee417818(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/ee417897(v=vs.85)

Four Common Types of Windows
API-based User-mode Keyloggers Keylogger using DirectInput

 LPDIRECTINPUT8 　 lpDI = NULL;
 LPDIRECTINPUTDEVICE8 lpKeyboard = NULL;
 BYTE key[256];
 ZeroMemory(key, sizeof(key));

 DirectInput8Create(hInstance, DIRECTINPUT_VERSION, IID_IDirectInput8, (LPVOID*)&lpDI, NULL);
 lpDI->CreateDevice(GUID_SysKeyboard, &lpKeyboard, NULL);
 lpKeyboard->SetDataFormat(&c_dfDIKeyboard);
 lpKeyboard->SetCooperativeLevel(hwndMain, DISCL_FOREGROUND | DISCL_NONEXCLUSIVE | DISCL_NOWINKEY);

 while(true) {
 HRESULT ret = lpKeyboard->GetDeviceState(sizeof(key), key);
 if (FAILED(ret)) {
 lpKeyboard->Acquire();
 lpKeyboard->GetDeviceState(sizeof(key), key);
 }
 SaveTheKey(key, "log.txt");
 Sleep(50);
 }

Example Code

Four Common Types of Windows
API-based User-mode Keyloggers Keylogger using DirectInput

👆 From dinput8.dll (version: 10.0.19041.1

Confirmed that the RegisterRawInputDevices API
is being called internally!

Note: We haven't fully analyzed dinput8.dll, but at least when running the keylogger, we confirmed that the RegisterRawInputDevices was being called internally.

 Detecting Keyloggers by Monitoring Windows API calls

❖ How can we monitor Windows API calls?
✓ Event Tracing for Windows ETW

■ Framework provided by Microsoft for tracing and logging the execution of

applications and system components in Windows

■ Microsoft-Windows-Win32k ETW Provider
● Manifest-based ETW Provider (the modern ETW event provider)

Event Tracing for Windows(ETW): https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
Kernel ETW is the best ETW, https://www.elastic.co/security-labs/kernel-etw-best-etw

Developed a new feature in the EDR that detects keyloggers
by monitoring API calls and analyzing their behavior

Elastic Security
Defend Integration EDR

https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://www.elastic.co/security-labs/kernel-etw-best-etw

Session 1

 Event Tracing for Windows ETW

Session 1
Provider 1

e.g.,Microsoft-Windows-Win32k
ETW Provider ENABLED

Controller

Consumer
(e.g., Event Viewer)

Provider 2
e.g.,Microsoft-Windows-WMIActivity

ETW Provider DISABLED

・・・

 ETW Providers

・・・

Enable / Disable Control
Data Flow

 Tracing Sessions
Start / Stop

Buffer

Event

Event

Trace Files (.etl)
Event

Event delivery
in real time

Session 1

 Event Tracing for Windows ETW

Session 1
Provider 1

e.g.,Microsoft-Windows-Win32k
ETW Provider ENABLED

Controller

Consumer
(e.g., Event Viewer)

Provider 2
e.g.,Microsoft-Windows-WMIActivity

ETW Provider DISABLED

・・・

 ETW Providers

・・・

Enable / Disable Control
Data Flow

 Tracing Sessions
Start / Stop

Buffer

Event

Event

Trace Files (.etl)
Event

Event delivery
in real time

Session 1

 Event Tracing for Windows ETW

Session 1
Provider 1

e.g.,Microsoft-Windows-Win32k
ETW Provider ENABLED

Controller

Consumer
(e.g., Event Viewer)

Provider 2
e.g.,Microsoft-Windows-WMIActivity

ETW Provider DISABLED

・・・

 ETW Providers

・・・

Enable / Disable Control
Data Flow

 Tracing Sessions
Start / Stop

Buffer

Event

Event

Trace Files (.etl)
Event

Event delivery
in real time

Session 1

 Event Tracing for Windows ETW

Session 1
Provider 1

e.g.,Microsoft-Windows-Win32k
ETW Provider ENABLED

Controller

Consumer
(e.g., Event Viewer)

Provider 2
e.g.,Microsoft-Windows-WMIActivity

ETW Provider DISABLED

・・・

 ETW Providers

・・・

Enable / Disable Control
Data Flow

 Tracing Sessions
Start / Stop

Buffer

Event

Event

Trace Files (.etl)
Event

Event delivery
in real time

 Internals of Providers (e.g., Win32k)

The Microsoft-Windows-Win32k provider is a kernel-level provider
 that emits ETW events from the kernel level

User-mode

Kernel-mode

👆 From win32kbase.sys (version: 10.0.19041.5247

(user32.dll) GetAsyncKeyState

(win32u.dll) NtUserGetAsyncKeyState

(win32kbase.sys) NtUserGetAsyncKeyState

EtwTraceGetAsyncKeyState function
which is associated to ETW event writing

 ETW Providers

We can see all the providers registered in Windows
using the logman query providers command

More than 1,000 providers
are registered by default!😮

 Manifest Files (for Manifest Based ETW Providers)

 A document that specifies event structures such as
event categories, fields, and levels for the tracing

https://github.com/microsoft/perfview

> PerfView.exe /noGUI userCommand DumpRegisteredManifest Microsoft-Windows-Win32k

Microsoft-Windows-Win32k.manifest.xml

 Event Fields Definition Manifest File)

Microsoft-Windows-Win32k.manifest.xml

GetAsyncKeyState Event ID 1003

ETW events also include the process ID, thread ID,
and other metadata of the triggered event.

 Challenges in Understanding Manifest Files

❖ The event name may not be provided.
❖ The field name may not clearly describe the collected data.
❖ Events and fields may change based on the Windows version.
❖ The manifest file does not specify event trigger conditions.

 Sometimes, it is necessary to perform reverse engineering, call relevant APIs
 to check which events are generated, and search for other researchers' findings.

 Challenges

 Target ETW Events and Useful Fields for Detection
Event Name Event ID Field Name Reason

GetAsyncKeyState
Event ID 1003

MsSinceLastKeyEvent For detecting
polling-based keyloggersBackgroundCallCount

SetWindowsHookEx
Event ID 1002

FilterType
For detecting
hooking-based keyloggers

pstrLib
pfnFilterProc

RegisterRawInputDevices
Event ID 1001

ReturnValue

For detecting keyloggers
using Raw Input and
DirectInput

UsagePage
Usage
Flags
ThreadStartAddress
cWindows
cVisWindows
ThreadInfoFlags
ThreadStartAddressMappedModuleName
ThreadStartAddressVadAllocationProtect

 Tool Release: ETW_Win32kAPIMonitor

❖ ETW APIs for starting, configuring,
opening, and processing trace sessions

✓ StartTraceW

✓ EnableTraceEx2

✓ OpenTraceW

✓ ProcessTrace

https://github.com/AsuNa-jp/ETW_Win32kAPIMonitor

A standalone tool which monitors API calls related to keyloggers (GetAsyncKeyState /
SetWindowsHookEx / RegisterRawInputDevices) using the Win32k ETW provider

https://docs.google.com/file/d/1bA6LYMmwquWfsTBV26Kye4IhbpmBLdFf/preview

Developing Behavioral Detection Rules

 GetAsyncKeyState Event ID 1003

Field Name Description Example

 MsSinceLastKeyEvent The elapsed time in milliseconds since the
last GetAsyncKeyState event. 141

 BackgroundCallCount
The total number of GetAsyncKeyState API
calls, including unsuccessful calls, since the
last successful GetAsyncKeyState event.

449

 Useful Fields for Detection

 Behavioral Detection Rules for Polling-based Keyloggers

 GetAsyncKeyState API Call from Suspicious Process Excerpt of key points)

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_getasynckeysta
te_api_call_from_suspicious_process.toml

Checks whether BackgroundCallCount >= 400 ,which indicates
that the GetAsyncKeyState API is being called frequently

 Behavior Detection Rule

💡Polling-based keylogger might be present

 SetWindowsHookEx Event ID 1002

Field Name Description Example

 FilterType Type of hook procedure that will be
installed.

13
(WH_KEYBOARD_LL)

 pstrLib The DLL that contains the hook
procedure.

"C\Windows\System32\
Taskbar.dll"

 pfnFilterProc The memory address of the hooked
procedure or function. 2431737462784

 Useful Fields for Detection

 Behavioral Detection Rules for Hooking-based Keyloggers

 Behavior Detection Rule
 Keystrokes Input Capture via SetWindowsHookEx Excerpt of key points)

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystrokes_inp
ut_capture_via_setwindowshookex.toml

Checks whether a hook procedure for monitoring low-level keyboard
input events is installed when SetWindowsHookEx is called

💡Hooking-based keylogger might be present

FilterType (hook type) == “WH_KEYBOARD_LLˮ

 RegisterRawInputDevices Event ID 1001

Field Name Description Example

 ReturnValue Return value of the RegisterRawInputDevices API call. 1

 UsagePage
This parameter indicates the top-level collection
Usage Page) of the device. It is the first member of
the RAWINPUTDEVICE structure.

1
(HID_USAGE_PAGE

_GENERIC)

 Usage
This parameter indicates the specific device Usage
within the Usage Page. It is the second member of the
RAWINPUTDEVICE structure.

6
(HID_USAGE_GEN
ERIC_KEYBOARD)

 Flags
A mode flag that specifies how to interpret the
information provided by UsagePage and Usage. It is
the third member of the RAWINPUTDEVICE structure.

256
(RIDEV_

INPUTSINK)
 ThreadStartAddress The thread start address of the thread. 0x95b7de

 Useful Fields for Detection

 RegisterRawInputDevices Event ID 1001

Field Name Description Example

 cWindows Number of windows owned by the
calling thread. 2

 cVisWindows Number of visible windows owned
by the calling thread. 0

 ThreadInfoFlags Thread info flags. 16

ThreadStartAddressMapp
edModuleName

Name of the module associated with
the starting address of a thread.

\Device\HarddiskVol
ume3\Users\vagrant

\keylogger.exe

ThreadStartAddressVadAll
ocationProtect

The memory protection attributes
associated with the starting address
of a thread.

128

 Useful Fields for Detection

 Behavioral Detection Rules (for Raw Input Keyloggers)

 Behavior Detection Rule
 Keystroke Input Capture via RegisterRawInputDevices Excerpt of key points)　

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystroke_input
_capture_via_registerrawinputdevices.toml

Checks the arguments of the RegisterRawInputDevices API call to see
if the registered device is a keyboard and if the RIDEV_INPUTSINK flag is set.

💡Keyloggers using Raw Input Model might be present

commonly used by keyloggers

Behavioral Detection Rule Name URL
GetAsyncKeyState API Call from
Suspicious Process

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collectio
n_getasynckeystate_api_call_from_suspicious_process.toml

GetAsyncKeyState API Call from
Unusual Process

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collectio
n_getasynckeystate_api_call_from_unusual_process.toml

Keystroke Input Capture via
DirectInput

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collectio
n_keystroke_input_capture_via_directinput.toml

Keystroke Input Capture via
RegisterRawInputDevices

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collectio
n_keystroke_input_capture_via_registerrawinputdevices.toml

Keystroke Messages Hooking via
SetWindowsHookEx

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collectio
n_keystroke_messages_hooking_via_setwindowshookex.toml

Keystrokes Input Capture from a
Managed Application

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collectio
n_keystrokes_input_capture_from_a_managed_application.toml

Keystrokes Input Capture from a
Suspicious Module

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collectio
n_keystrokes_input_capture_from_a_suspicious_module.toml

Keystrokes Input Capture from
Suspicious CallStack

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collectio
n_keystrokes_input_capture_from_suspicious_callstack.toml

Keystrokes Input Capture from
Unsigned DLL

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collectio
n_keystrokes_input_capture_from_unsigned_dll.toml

Keystrokes Input Capture via
SetWindowsHookEx

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collectio
n_keystrokes_input_capture_via_setwindowshookex.toml

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_getasynckeystate_api_call_from_suspicious_process.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_getasynckeystate_api_call_from_suspicious_process.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_getasynckeystate_api_call_from_unusual_process.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_getasynckeystate_api_call_from_unusual_process.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystroke_input_capture_via_directinput.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystroke_input_capture_via_directinput.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystroke_input_capture_via_registerrawinputdevices.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystroke_input_capture_via_registerrawinputdevices.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystroke_messages_hooking_via_setwindowshookex.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystroke_messages_hooking_via_setwindowshookex.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystrokes_input_capture_from_a_managed_application.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystrokes_input_capture_from_a_managed_application.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystrokes_input_capture_from_a_suspicious_module.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystrokes_input_capture_from_a_suspicious_module.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystrokes_input_capture_from_suspicious_callstack.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystrokes_input_capture_from_suspicious_callstack.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystrokes_input_capture_from_unsigned_dll.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystrokes_input_capture_from_unsigned_dll.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystrokes_input_capture_via_setwindowshookex.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/collection_keystrokes_input_capture_via_setwindowshookex.toml

https://www.elastic.co/security-labs/protecting-your-devices-from-information-theft-keylogger-protection

 About Todayʼs Talk

Part

A

Part

B Hotkey-based Keylogger Detection

Detecting Common Types of Keyloggers Through
Windows API Monitoring

👈
💡Sharing my experience of adding a keylogger behavioral detection feature to an EDR

 Encountering Hotkey-based Keylogging Method

※ https://x.com/yo_yo_yo_jbo/status/1797778371939893504 This message was originally written in Japanese, but translated in English)

🤔

One day, I received a message introducing me
to a new keylogging method

jonathanbaror.com

https://x.com/yo_yo_yo_jbo/status/1797778371939893504

 Encountering Hotkey-based Keylogging Method

��

 https://nullcon.net/review-panel/jonathan-bar-or

 Encountering Hotkey-based Keylogging Method

��

 https://nullcon.net/review-panel/jonathan-bar-or
 https://github.com/yo-yo-yo-jbo/hotkeyz

 What is a Hotkey?

A type of keyboard shortcut that directly invokes a specific function
 on a computer by pressing a single key or a combination of keys

ALT TAB Task Switching

With the RegisterHotKey API, we can set custom hotkeys.
💡Hotkey-based keyloggers abuse this capability to capture the keystrokes entered by the user.

 How Hotkey-based Keyloggers Capture Keystrokes Stealthily Step 1

keyboard

Basically, a keylogger registers each virtual keycode as a
system-wide hotkey using the RegisterHotKey API (※)

※Modifier keys such as Alt VK_MENU, Ctrl VK_CONTROL, Shift VK_SHIFT, and Win VK_LWIN/VK_RWIN) cannot be registered as hotkeys
on their own. However, combinations of these modifier keys with other keys, such as SHIFTA, can be registered as hotkeys.

 How Hotkey-based Keyloggers Capture Keystrokes Stealthily Step 1

Hotkey
※Modifier keys such as Alt VK_MENU, Ctrl VK_CONTROL, Shift VK_SHIFT, and Win VK_LWIN/VK_RWIN) cannot be registered as hotkeys
on their own. However, combinations of these modifier keys with other keys, such as SHIFTA, can be registered as hotkeys.

keyboard

Basically, a keylogger registers each virtual keycode as a
system-wide hotkey using the RegisterHotKey API (※)

Hotkey

keyboard

 How Hotkey-based Keyloggers Capture Keystrokes Stealthily Step 2

Key press👉
※Modifier keys such as Alt VK_MENU, Ctrl VK_CONTROL, Shift VK_SHIFT, and Win VK_LWIN/VK_RWIN) cannot be registered as hotkeys
on their own. However, combinations of these modifier keys with other keys, such as SHIFTA, can be registered as hotkeys.

Basically, a keylogger registers each virtual keycode as a
system-wide hotkey using the RegisterHotKey API (※)

Hotkey

keyboard

 How Hotkey-based Keyloggers Capture Keystrokes Stealthily Step 2

Key press👉
※Modifier keys such as Alt VK_MENU, Ctrl VK_CONTROL, Shift VK_SHIFT, and Win VK_LWIN/VK_RWIN) cannot be registered as hotkeys
on their own. However, combinations of these modifier keys with other keys, such as SHIFTA, can be registered as hotkeys.

　Sends a WM_HOTKEY message, which includes
virtual keycode (VK_J) to the keyloggerʼs thread message queue

Basically, a keylogger registers each virtual keycode as a
system-wide hotkey using the RegisterHotKey API (※)

 How Hotkey-based Keyloggers Capture Keystrokes Stealthily Step 3

Inside the keyloggerʼs message loop

Retrieves the WM_HOTKEY message using
the PeekMessage API and extracts the virtual keycode from it

Get virtual key code (& log it)

😈

 How Hotkey-based Keyloggers Capture Keystrokes Stealthily Step 4

Unregister the hotkey using the UnRegisterHotKey API

Hotkey

keyboard

 How Hotkey-based Keyloggers Capture Keystrokes Stealthily Step 5

Simulate a key press using the keybd_event API
💡To the user, it appears as if the key was pressed normally

Sends a WM_KEYDOWN message to an application

Hotkey

keyboard

 How Hotkey-based Keyloggers Capture Keystrokes Stealthily Step 6

Re-register the key as a hotkey using the RegisterHotKey API,
and wait for the further user input Back to Step 2

Hotkey

keyboard

 Can ETW Monitor the RegisterHotKey API Calls?

NtUserGetAsyncKeyState (win32k) NtUserRegisterHotKey (win32k)

👆 From win32kbase.sys (version: 10.0.19041.5247 👆 From win32kfull.sys (version: 10.0.19041.5247

😄
EtwTraceGetAsyncKeyState function

which is associated to the ETW event writing
ETW is not monitoring this API..

 Are there any detection methods other than ETW?

🤔? ?
Me

 Are there any detection methods other than ETW?

🤔? ?
Me

Is hotkey information
stored elsewhere?

 Are there any detection methods other than ETW?

🤔? ?
If all main virtual key codes were
registered as hotkeys, then ?😈

keyboard

keyboard

Me

Hotkey

Is hotkey information
stored elsewhere?

 Undocumented Hotkey-table (gphkHashTable)

��
_RegisterHotKey (called by NtUserRegisterHotkey)

Found a global hash table
gphkHashTable, which

contains registered
hotkey data!

 Undocumented Hotkey-table (gphkHashTable)

��
_RegisterHotKey (called by NtUserRegisterHotkey)

Found a global hash table
gphkHashTable, which

contains registered
hotkey data!

The gphkHashTable stores HOT_KEY objects (i.e., Registered Hotkey Info)
in a hash table, with their index calculated simply as virtual keycode % 0x80

win32kfull.sys (version: 10.0.19041.5247

 Structure of HOT_KEY Object

Each HOT_KEY object contains a virtual key code and modifiers

 typedef struct _HOT_KEY {
 PTHREADINFO pti,

PVOID callback,
 PWND pWnd,
 UINT16 fsModifiers1, // eg. MOD_CONTROL0x0002
 UINT16 fsModifiers2, // eg. MOD_NOREPEAT0x4000
 UINT32 vk, // virtual keycode
 UINT32 id, // identifier
#ifdef _AMD64_

PADDING32 pad;
#endif

struct _HOT_KEY *pNext; // pointer to the next object
…[skip]...
} HOT_KEY, * PHOT_KEY;

windbg Structure

HOT_KEY object for the Enter key with no modifiers
Virtual Key Code: 0xd, ID 3

 Structure of gphkHashTable

0
1
2
3
4
5
6
7
.
.
.

HOT_KEY

HOT_KEY

HOT_KEY HOT_KEY

HOT_KEY

example:
VK 0x6 SHIFT

index =
vk % 0x80

example:
 VK 0x6 +
ALT

HOT_KEY

example:
 VK 0x6

By scanning all HOT_KEY objects in gphkHashTable, we can identify all registered hotkeys.
💡If all of the main keys are registered as hotkeys, itʼs suspicious!

.

.

.

.

 Challenges in Developing a Detection Tool

❖ Challenge 1 How to Access Kernel Space?

❖ Challenge 2 How to Find the Address of gphkHashTable?

❖ Challenge 3: win32kfull.sys is a Session Driver

Challenge #2

Challenge #1

Challenge #3

 Challenge #1 How to Access Kernel Space?

User-mode

Kernel-mode

Hotkey Table
(gphkHashTable)

App.exe

 Windows

The hotkey table cannot be directly accessed by
 a user-mode application since the table resides in kernel space.

 Challenge #1 How to Access Kernel Space?

User-mode

Kernel-mode

DeviceDriver.sys

Hotkey Table
(gphkHashTable)

App.exe

 Windows

We need to develop a device driver to access gphkHashTable !

The hotkey table cannot be directly accessed by
 a user-mode application since the table resides in kernel space.

 Challenge #2 How to Find the Address of gphkHashTable?

Inside the IsHotKey function (win32kfull.sys) which is
called from an exported function named EditionIsHotKey
Opcode bytes Assembly Code

https://www.felixcloutier.com/x86/lea or, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Vol. 2A 3-605 for the details on the LEA instruction
Note - win32kfull.sys (version: 10.0.19041.5247

https://www.felixcloutier.com/x86/lea

 Challenge #2 How to Find the Address of gphkHashTable?

Inside the IsHotKey function (win32kfull.sys) which is
called from an exported function named EditionIsHotKey
Opcode bytes Assembly Code

0x48 0x8D 0x1D ["32 bit offset"];

https://www.felixcloutier.com/x86/lea

Find this pattern and determine the gphkHashTable address
or, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Vol. 2A 3-605 for the details on the LEA instruction

Note - win32kfull.sys (version: 10.0.19041.5247

https://www.felixcloutier.com/x86/lea

 Challenge #2 How to Find the Address of gphkHashTable?

Overview of How to Find the gphkHashTable Address

Resolve the base address
of win32kfull.sys using

PsLoadedModuleList API

Step 1

win32kfull.sys

Inside
kernel space

Base address

 Challenge #2 How to Find the Address of gphkHashTable?

Overview of How to Find the gphkHashTable Address

Resolve the base address
of win32kfull.sys using

PsLoadedModuleList API

Resolve the address of the
EditionIsHotKey function using

RtlFindExportedRoutineByName,
then find the address of IsHotKey.

Step 1

win32kfull.sys

Inside
kernel space

 48 83 EC 28 sub rsp, 28h
 E8 7F 74 EE FF call IsHotKey
 33 C9 xor ecx, ecx
 48 85 C0 test rax, rax

Inside
win32kfull.sys

Base address
EditionIsHotKey

Signature:0xE8

Step 2

 Challenge #2 How to Find the Address of gphkHashTable?

Overview of How to Find the gphkHashTable Address

Resolve the base address
of win32kfull.sys using

PsLoadedModuleList API

Resolve the address of the
EditionIsHotKey function using

RtlFindExportedRoutineByName,
then find the address of IsHotKey.

Step 1

Find the address of
gphkHashTable

win32kfull.sys

Inside
kernel space

 48 83 EC 28 sub rsp, 28h
 E8 7F 74 EE FF call IsHotKey
 33 C9 xor ecx, ecx
 48 85 C0 test rax, rax

Inside
win32kfull.sys

Inside
win32kfull.sys

Base address
EditionIsHotKey

48 83 EC 50 sub rsp, 50h
0F B6 C2 movzx eax, dl
48 8D 1D 1F 8D 26 00 lea rbx, gphkHashTable
83 E0 7F and eax, 7Fh

IsHotKey

Signature:0xE8
Signature:
0x48, 0x8d, 0x1d

Step 2 Step 3

 Challenge #3: win32kfull.sys is a Session Driver

Session 0※ Session 1

Session 2 Session 3

Service Process A

Service Process B

Service Process C

Process A

Process B

Process C

Process A

Process B

Process C

Process A

Process B

Process C

example:
winlogon.exe

 What is a Session? Quick Summary)

❖ In Windows, each logged-in user is assigned
a separate session (starting from session 1,
with a dedicated desktop environment.

※ Session 0 is dedicated exclusively to service processes.

 Challenge #3: win32kfull.sys is a Session Driver

Session 0※ Session 1

Session 2 Session 3

Service Process A

Service Process B

Service Process C

Process A

Process B

Process C

Process A

Process B

Process C

Process A

Process B

Process C

example:
winlogon.exe

 What is a Session? Quick Summary)

Hotkey info registered in Session 1 can only be accessed from within that session.

❖ In Windows, each logged-in user is assigned
a separate session (starting from session 1,
with a dedicated desktop environment.

❖ Kernel data that must be managed separately for
each session, including win32k drivers data (such
as keyboard input), is stored in an isolated kernel
memory area called session space.
✓ This ensures that each user's screen and input

remain separate and isolated.

※ Session 0 is dedicated exclusively to service processes.

 Challenge #3: win32kfull.sys is a Session Driver

 KAPC_STATE apc;
 PEPROCESS winlogon;
 UNICODE_STRING processName;

　RtlInitUnicodeString(&processName, L"winlogon.exe");
 HANDLE procId = GetPidFromProcessName(processName);
 NTSTATUS status = PsLookupProcessByProcessId(procId, &winlogon);
 KeStackAttachProcess(winlogon, &apc);

 ~ Can access gphkHashTable as the attached process context (session 1 context) ~

 KeUnstackDetachProcess(&apc);
 ObDereferenceObject(winlogon);

Session 1
winlogon.exe
(if only one user is logged in)

The KeStackAttachProcess API allows the current thread to
temporarily attach to the address space of a specified process

Example Code

Thread is attached to the process

 Detection Logic

keyboard

If all alphanumeric keys are registered as hotkeys, an alert
will be raised, as it is likely that a hotkey-based keylogger is present.

Hotkey

dbgview.exe

It is also easy to check all
VK + modifiers hotkeys💡

 Tool Release: Hotkey-based Keylogger Detector

https://github.com/AsuNa-jp/HotkeybasedKeyloggerDetector

��

DEMO TIME!

https://docs.google.com/file/d/1C4Z5s9kYEtP951cE-eaq-DtXEcE24rB5/preview

Thank You !

 asuka.nakajima@elastic.co

 AsuNa_jp

 https://www.kun0ichi.net

 https://github.com/AsuNa-jp

E-mail

X Twitter)

Website

Github

धन्यवा
द

