State of 10S Jailbreaking
In 2025

Lars Froder
Cellebrite Labs

About Me

« Security Researcher from Germany

« Started IOS development journey in
2017, research in 2022

 Employed at Cellebrite Labs

* Developed various I10S jailbreak
system extensions (“tweaks”)

» Developer of TrollStore and
Dopamine Jailbreak

@opa334.bsky.social “
opa334@infosec.exchange @

Motivations

« Run unsigned / third party software on iPads and iPhones
* Enable system introspection capabilities (e.g. Frida, lidb)
» Load system extensions / tweaks

Agenda

« Code Signing on i0S

 TrollStore

« Dopamine @

Agenda

* Code Signing on I0S

* TrollStore

* Dopamine a

Code Signing on 10S

« Used for Apple to maintain control over all authorized software
* [
* Main thing that a jailbreak needs to bypass

» Enforces all executables are either
« Shipped with the operating system (Ad-hoc signed)
* Distributed on the App Store (Apple signed)
* Installed via a Developer account (Developer signed)

Code Signature

MachO Binary Code Signature Superblob

mach_header /| CSSLOT_CODEDIRECTORY
—| LC_SEGMENT 64 CSSLOT_ALTERNATE_CODEDIRECTORIES | 0
—| LC_SEGMENT 64 ! | CSSLOT_ALTERNATE_CODEDIRECTORIES | n
— LC_SEGMENT 64 CSSLOT_ENTITLEMENTS
CSSLOT_DER_ENTITLEMENTS

— LC_SEGMENT 64
(...) ! | CSSLOT_SIGNATURESLOT

LC_CODE_SIGNATURE
(...)

> <segments, sections> |

<code signature> /

\4

Code Signature: Code Directory

Contain hashes of all executable pages within the binary

Additionally contain hashes of other relevant data (e.g.
CSSLOT_ENTITLEMENTYS)

One code directory has one hash type, (e.g. SHA1, SHA256, ...)
One binary can have multiple code directories with different hash types

Code Signature: Code Directory

MachO Binary Code Signature Superblob

Code Directory

mach_header /| CSSLOT_CODEDIRECTORY

(...)
LC_SEGMENT_64 /| CSSLOT_ALTERNATE_CODEDIRECTORIES |0 | hashType = SHAL

LC_SEGMENT_64 ! | CSSLOT_ALTERNATE_CODEDIRECTORIES |n | (...)
LC_SEGMENT_64

CSSLOT_ENTITLEMENTS \

‘ SHAL(ENTITLEMENTS)
— LC_SEGMENT 64 CSSLOT_DER_ENTITLEMENTS SHA1(page[0])
(..) CSSLOT_SIGNATURESLOT SHA1(page[1])
LC_CODE_SIGNATURE (...)
(...) ,"' I," ‘\‘ SHA1(page[n])
N ,

\
<segments, sections> "'

__________________________ J V()

\ 4

\
<code signature> !

Code Signature:

MachO Binary

mach_header

—| LC_SEGMENT_64
LC_SEGMENT_64
— LC_SEGMENT_64
— LC_SEGMENT_64

(..)

LC_CODE_SIGNATURE
(...)

<segments, sections>

\ 4

<code signature>

Code Signature Superblob

/| CSSLOT CODEDIRECTORY
CSSLOT_ALTERNATE_CODEDIRECTORIES | n
CSSLOT_ENTITLEMENTS
CSSLOT_DER_ENTITLEMENTS
CSSLOT_SIGNATURESLOT

Code Directory

Code Directory

(..
hashType = SHA256
(..
SHA256(ENTITLEMENTYS)
SHA256(page|[0])
SHA256(page[1])

(..

y

)

)

SHA256(page[n])

| (.

)

Code Signature: Entitlements

* Describe the permissions of the binary
« Kernel drivers it can access
* File paths it can read/write to/from
« Whether the binary is sandboxed
« Whether the binary may be debugged by other processes
¢ efc...

« Can be checked both by the Kernel itself and by other processes

Code Signature:

MachO Binary

mach_header
LC_SEGMENT 64
LC_SEGMENT 64

— LC_SEGMENT_64

—| LC_SEGMENT_64
(...)
LC _CODE_SIGNATURE
(...)

| <segments, sections>

» <code signhature>

Code Signature Superblob

1
1
1
1
1
1

CSSLOT_CODEDIRECTORY

CSSLOT_ALTERNATE_CODEDIRECTORIES | 0
CSSLOT_ALTERNATE_CODEDIRECTORIES | n

CSSLOT_DER_ENTITLEMENTS
CSSLOT_SIGNATURESLOT

EFntitlements

Entitlements (plist)

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">

<dict>

<key>com.apple.developer.usernotifications.communication
</key>

<true/>

<key>com.apple.developer.avfoundation.multitasking-
camera-access</key>

<true/>

<key>application-identifier</key>

<string>53Q6R32WPB.com.hammerandchisel.discord</string>
<key>aps-environment</key>
<string>production</string>
<key>com.apple.developer.storekit.request-data</key>
<true/>
<key>com.apple.developer.associated-domains</key>
<array>
<string>applinks:discord.com</string>
<string>applinks:discordapp.com</string>
<string>applinks:discord.gg</string>
<string>applinks:discord.new</string>
<string>applinks:discord.gift</string>
<string>applinks:discord.gifts</string>
<string>applinks:discord.co</string>
<string>applinks:*.discord.com</string>

<string>applinks:*.discordapp.com</string>
<string>applinks:*.discord.gg</string>
<string>applinks:*.discord.new</string>
<string>applinks:*.discord.gift</string>
<string>applinks:*.discord.gifts</string>
<string>applinks:*.discord.co</string>

<string>applinks:1l.discord.com</string>

<string>applinks:discordapp.page.link</string>

<string>webcredentials:discord.com</string>

<string>webcredentials:*.discord.com</string>
</array>
<key>com.apple.security.application-groups</key>
<array>

<string>group.com.hammerandchisel.discord</string>
</array>

<kev>com.apple.developer.team-identifier</kev>

<string>53Q6R32WPB</string>
</dict>
</plist>

Code Signature:

MachO Binary

mach_header

LC_SEGMENT_64
LC_SEGMENT_64
— LC_SEGMENT_64
LC_SEGMENT_64

(..)

LC_CODE_SIGNATURE

Code Signature Superblob

/| CSSLOT CODEDIRECTORY

| CSSLOT_ALTERNATE_CODEDIRECTORIES |0

CSSLOT_ALTERNATE_CODEDIRECTORIES | n
CSSLOT_ENTITLEMENTS

CSSLOT_SIGNATURESLOT

EFntitlements

Entitlements (DER)

6verslon"li)" encoding="UTF-8"2> \
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DIDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>com.apple.developer.usernotifications.communication
</key>

<true/>

<key>com.apple.developer.avfoundation.multitasking-
camera-access</key>

<true/>

<key>application-identifier</key>

<string>53Q6R32WPB. com. hammerandchisel.discord</string>
<key>aps-environment</key>
<string>production</string>
<key>com.apple.developer.storekit.request-data</key>
<true/>

<key>com.apple.developer.associated-domains</key>
<array>

DER <string>applinks:discord.com</string>
<string>applinks:discordapp.com</string>
<string>applinks:discord.gg</string>

(..)

<segments, sections> "'

\ 4

<code signature> !

\ <s

\ <st

\ <s

<s
\

tring>applinks:discord.new</string>

ring>applinks

tring>applinks
<st
\

ring>applinks

tring>applinks

\ <string>applinks

tring>applinks
tring>applinks
tring>applinks
tring>applinks
tring>applinks
tring>applinks

:discord.gift</string>
:discord.gifts</string>
:discord.co</string>
:*.discord.com</string>
:*.discordapp.com</string>
:*.discord.gg</string>
:*.discord.new</string>
:*.discord.gift</string>
:*.discord.gifts</string>
:*.discord.co</string>
:1.discord.com</string>

tring>applinks:discordapp.page.link</string>

\ <string>webcredentials:discord.com</string>
\ <string>webcredentials:*.discord.com</string>
\ </array>

<key>com.apple.security.application-groups</key>
\ <array>

<string>group.com.hammerandchisel.discord</string>
\ </array>

\ <key>com.apple.developer.team-identifier</key>

\ <string>53Q6R32WPB</string>

\ ol

\ </plist>

Code Signature: Signature Blob

Contains cryptographically signed hash of code directories
Signed with Apple or Developer cert

Adhoc signed binaries do not have a signature, those are verified via the
TrustCache

Can be signed by multiple signers

Code Signature: Code Directory
Hash

* Uniquely identifies
@e Directory \ eXeCUtab|e / |Ib|’al’y

() Hash of all other hashes
?as)“Type‘S“AZ% and metadata -> Ensures
SHA256(ENTITLEMENTS) I nteg rlty

CDHash_SHA256 = SHA256 | | SHA256(page[0]) « Contained within Signhature

SHA256(page[1])

o Blob, recalculated and
SHAZS6(page]) 19|ompared when validating
() e

_ _/

Code Signature:

MachO Binary

\ 4

mach_header

LC_SEGMENT_64
LC_SEGMENT_64
LC_SEGMENT_64
LC_SEGMENT_64

(...)
LC_CODE_SIGNATURE

(..)

<segments, sections>

<code signature>

Code Signature Superblob

CSSLOT_CODEDIRECTORY
CSSLOT_ALTERNATE_CODEDIRECTORIES | 0
CSSLOT_ALTERNATE_CODEDIRECTORIES | n

CSSLOT_ENTITLEMENTS
CSSLOT_DER_ENTITLEMENTS

CSSLOT_SIGNATURESLOT

CMS Blob

Signature Blob

DER

(...)

<CDHash_SHA256>
<CDHash_SHA1>

(...)

A

Signed by

Private Key

Code Signature Enforcement

* Every executables requires a valid code signature to run
« System executables: Ad hoc signed, verified by CDHash in trust cache

« AppStore executables: Signed by Apple on submission using “Apple
IPhone OS Application Signing” certificate

« Xcode App executables: Signed by Developer certificate issued by
Apple, extremely limited

« Checked by the Kernel on execution
 During posix_spawn or execve syscall

Code Signing Enforcement: Trust Level

 Trust Levels are used for isolation between different process
“typesﬂ

* A process cannot dlopen / mmap a library with a lower trust
level than the executable that the process was spawned from

« A process cannot obtain a task port (e.g. debugging rights) for a
process with a higher trust level than the executable that the
caller process was spawned from

Code Enforcement Paths: System
Binariles

« Kernel checks whether CDHash of binary is considered
trustworthy, this is true if

« The CDHash is contained within a static list of CDHashes shipped with
the operating system

 The CDHash is contained within one of multiple dynamic lists of
CDHashes that can be loaded by Xcode at runtime

* |f it finds a match, the process is spawned with a trust level of 8

Code Enforcement Paths: App
Store Bilnariles

« Kernel calls into Apple Mobile File Integrity driver
* Apple Mobile File Integrity calls into CoreTrust driver

« CoreTrust parses signature and ensures the binary is validly
signed by App Store certificate (public key embedded into
operating system)

* If it IS, the process Is spawned with a trust level of 7

Code Enforcement Paths:
Developer Signed

* Only allowed when developer mode is enabled

* If App Store check fails, CoreTrust contacts the userspace
service amfid to verify whether a valid developer certificate

signs the binary

* |f this check Is successful, the process is spawned with a trust
level of 5

Code Enforcement Paths

Trust Type Checked by
Level

8 In TrustCache Kernel (CSM / PMAP_CS / TXM)
7 App Store CoreTrust
5 Developer Signed amfid

(Simplified for better accessibility)

Agenda

* Code Signing on I0S

 TrollStore

* Dopamine a

TrollStore (I0S 14.0 - 16.6.1, 17.0)

w ® ‘

CocoaTopls DebToiPA Dophinios

ﬁs‘z‘?

Filza

CVE-2023-41991

Security

Available for: iPhone XS and later, iPad Pro 12.9-inch 2nd generation and later, iPad Pro
10.5-inch, iPad Pro 11-inch 1st generation and later, iPad Air 3rd generation and later, iPad
6th generation and later, iPad mini 5th generation and later

Impact: A malicious app may be able to bypass signature validation. Apple is aware of a
report that this issue may have been actively exploited against versions of iOS before iOS
16.7.

Description: A certificate validation issue was addressed.

CVE-2023-41991: Bill Marczak of The Citizen Lab at The University of Toronto's Munk
School and Maddie Stone of Google's Threat Analysis Group

« Patched in i0OS 17.0.1 and 16.7
« Reconstructed through patchdiffing by @alfiecg_dev and me

CVE-2023-41991

« Within the CoreTrust Kernel Extension, which is responsible for checking
the code signature of App Store apps

« Called by AMFI (Apple Mobile File Integrity) Kernel Extension
« One of the most complex bugs | have ever seen

« Multiple quirks combined allow a fakesigned binary to run

» CoreTrust only checks whether the last signer of a signature is valid (or rather, uses
the same error variable for every signer, meaning it will just be overwritten by the last
check)

« CoreTrust returns the CodeDirectory hash of the first signer back to AMFI

« CoreTrust only passes the first signer to the function that checks whether the binary is
App Store signed

CVE-2023-41991: Code Directory

Code Signature Superblob

el o7 CODEDIRECTORY * Code Directory stolen from a
- validly signed App Store app

CSSLOT_ALTERNATE_CODEDIRECTORIES | 0

CSSLOT_ALTERNATE_CODEDIRECTORIES | n * Type: SHAL

CSSLOT ENTITLEMENTS None of contained hashes

CSSLOT_DER_ENTITLEMENTS match our binaries

CSSLOT_SIGNATURESLOT executable pages, nor our

entitlements or anything else

CVE-2023-41991.: Alternate Code Directory

Code Signature Superblob
CSSLOT CODEDIRECTORY * Actual code directory that's
valid for our binary

CSSLOT_ALTERNATE_CODEDIRECTORIES | 0

CSSLOT_ALTERNATE_CODEDIRECTORIES | n « Type: SHA256 (Kernel
CSSLOT_ENTITLEMENTS prefers SHA256 over SHAL)
CSSLOT_DER_ENTITLEMENTS » Nothing special about it,

CSSLOT_SIGNATURESLOT really

CVE-2023-41991: Signature Slot

« Signer 1 (TrollStore certificate)

Code Signature Superblob Our certificate, signed data controlled by
us
CSSLOT_CODEDIRECTORY . . .

B « Valid hash for main code directory (SHA1)
CSSLOT_ALTERNATE_CODEDIRECTORIES | 0 » Valid hash for alternate code directory
CSSLOT_ALTERNATE_CODEDIRECTORIES | n (SHA256)

CSSLOT_ENTITLEMENTS « Signer 2 (Apple certificate)

CSSLOT DER_ENTITLEMENTS * Stolen from the same App Store app
binary as the main code directory

CSSLOT_SIGNATURESLOT « Valid hash for main code directory (SHA1)

 Invalid hash for alternate code directory
(SHA256)

CVE-2023-41991: Entitlements

 Fully attacker controlled since their
hashes are In the alternate code

Code Signature Superblob directory (SHA256) that we also
CSSLOT_CODEDIRECTORY fully control
CSSLOT_ALTERNATE_CODEDIRECTORIES | 0 « Gives you arbitrary permissions to
CSSLOT ALTERNATE CODEDIRECTORIES | n do anything you want*
CSSLOT_ENTITLEMENTS e *EXcept anything involving
CSSLOT_DER_ENTITLEMENTS overtaking system processes,
CeSl OT SIGNATURESLOT since these are isolated from the

- rest of the system and the system

thinks we are an App Store app

|~ opa334
b @opa334dev

Thanks, that worked! my artwork finally prints! 122 a4,

Post ubersetzen

1Phone-13-Pro-von-Lars:~ root# print_artwork
zsh: killed print_artwork

{Phone-13-Pro-von-Lars:~ root# fastPathSignZ /var/jb/bin/print_artwork
iPhone-13-Pro-von-Lars:~ root# print_artwork

111! we out here! #AppStoreGang #FastPathSquad !1!!
{Phone-13-Pro-von-Lars:~ root# I

12:02 vorm. - 26. Nov. 2023 - 237.955 Mal angezeigt

Big shoutout to (dalfiecg dev!.

TrollStore

* App-Installer that itself is signed with CoreTrust bug

« Gets root via persona-mgmt entitlement

» Accepts unsigned IPA files (apps) to be opened within it

» Applies CoreTrust bug on all executables in the app bundle

* Places app on the filesystem

« Adds it to the icon cache

* App appears on home screen and is usable like any other app

TrollStore VS. Jallbreak

Persistent * Not persistent (unless chained with
separate persistence bug)

Only explicitly signed binaries can
execute All unsigned binaries can execute

Not able to spawn launch daemons Able to spawn launch daemons

No system wide tweak injection « System wide tweak injection

Agenda

* Code Signing on I0S

* TrollStore

* Dopamine a

Challenges of Modern Jailbreaks

» Kernel code Is read only, enforced via hardware (KTRR)
« Some pointers are protected by pointer authentication (PAC)

« Some sensitive pages are protected by the Page Protection
Layer (PPL)

Implementing a Modern Jailbreak

« Data-only
* Instead of hooking kernel code, hook userspace code

 Stash exploit primitives into a server, then offer various
operations to clients (other processes)

« Assumptions
« Kernel read/write primitive (acquired via exploit)
* PPL bypass (required for codesigning bypass)

Implementing a Modern Jailbreak

 Kernel Exploit: kfd landa (CVE-2023-41974)
e Supports I0S 15.0- 16.6.1

* PPL Bypass: Operation Triangulation (CVE-2023-38606)
« Supports I0S 15.0 - 16.5(.1)

* End result: Jailbreak for 1I0S 15.0 - 16.5 (all devices)

Code Signature

Fnforcement

* Every executables requires a valid code signature to run
« System executables: Ad hoc signed, verified by CDHash in TrustCache

» AppStore executables: Signed by Apple on submission using “Apple
IPhone OS Application Signing” certificate

« Xcode App executables: Signed by Developer certificate issued by

Apple, extremely limited

» Checked by the Kernel on execution
* During posix_spawn or execve syscall

Recall from earlier slide

Static TrustCache

* Linked list of arrays that

CDHash(</sbin/launchd>) contain trustworthy CDHashes
CDHash(</usr/lib/dyld>) * Embedded in operating
CDHash(</usr/libexec/installd>) SyStem

(--) » Protected by KTRR &id

Dynamic TrustCache

* Linked list of arrays of

CDHashes from binaries
Inside Xcode debugging

CDHash(</Developer/usr/bin/debugserver>)

CDHash(</Developer/ust/lib/libsysmon.dylib>) image

CDHash(</Developer/usr/libexec/sysmond>) e | oaded at runtime when

(..)) Xcode prepares debugger
support

 Protected by PPL []

Bypassing Code Signing with PPL R/W

Controlled by us * Allocate our own TrustCache
l structure

e Insert it Into the linked list

 Kernel now considers our
executables trustworthy and
allows them to be executed

* Libraries in TrustCache are
allowed to be mapped system
wide

CDHash(<jb/libjailbreak.dylib>)
CDHash(<jb/systemhook.dylib>)
CDHash(<jb/jbctl>)

(..)

Automatic Trust Caching

 Currently we can add files to TrustCache manually, but we want
to fully bypass codesigning system wide (for all files)

* |dea
« System tries to execute binary at path x or tries to map library at path x

» Before being launched / mapped, CDHash of binary / library at path x is
automatically added to TrustCache

« How can we archive this in practice?

launchdhook.dylib

* Injected into launchd (pid 1) process at jailbreak time
 Manages PPL R/W primitives

* Provides “jailbreak server” via mach and XPC, accessible
system wide

 Also solves some other miscellaneous tasks, like loading third
party launch daemons

systemhook.dylib

* |Injected by launchdhook into every process spawned by
aunchd

 Reinjects itself into any other child process

* Hooks posix_spawn and execve syscalls to add the target
CDHash to TrustCache by sending it to launchdhook via IPC

dyldhook

« Static patch of dynamic linker (dyld)
« Make DYLD INSERT_LIBRARIES environment variable work

» Talks to launchdhook IPC to patch some stuff about the process
and weaken the sandbox

« fcntl hook to make attaching any signature to a library work

« Calculate CDHash of signature to be attached and send it to
launchdhook, which will add it to TrustCache

 Effectively disables library validation

POSIX_spawn hook

int
posix_spawn(pid t *restrict pid, |ConStichHafFFestrictipathl
const posix spawn file actions t *file actions,

const posix spawnattr t *restrict attrp, char *const argv[restrict],
char *const envp[restrict]);

« Send path to launchdhook, which will calculate the CDHash of
the file and add it to TrustCache

» Modify envp (child process environment) to insert
“DYLD INSERT _LIBRARIES=systemhook.dylib”

Automatic Trust Caching: Summary

* In every process:

« fcntl hook (in dyld) adds the CDHash of any library that's about to be
mapped to TrustCache

« posix_spawn hook (in systemhook.dylib) adds the CDHash of any
binary that's about to be spawned to TrustCache

 Result: Code signing is bypassed; any binary can execute &/

Enabling Tweak Injection

* In systemhook: dlopen(“/var/|b/usr/lib/TweakLoader.dylib”)

« External package will provide tweak loader library that takes
care of any remaining logic

* Will parse third party extensions in
“/var/jb/System/Library/MobileSubstrate/DynamicLibraries” and
Inject them as neccessary

Dopamine (1I0S 15.0 - 16.5)

WA2 R 1) Cet FTHMAE

New

Dopamine 15 OCTOULR 2024 AT 1799

135 W0 - 1607 tarmDde)
L ' "

(3 FridaCodeManager

12, OCTOUER 2024 AT 1518

MyAutoLock Panda Beauty Assestant{§§...

{8 Seftrge

n Single Mute n Single VPN

10. OCTOGER 2034 AT 2208

(%, festart Springtloars
(@) Reboot Userspace ..] Sileo
u:’.

l:l Crediits 10. OCTOQER 2034 AT 2247

B Ango Full Thome, Icons [u BadgeSync Lﬂ ctrl esc b more

*
W

@ Crane Lite

&
¢

+D
9

8a @ s Wi

Wen eta I0S 17/18 jailbreak???

* Physical use after free bug class (used in kfd) killed in 17.3
* Root helpers (TrollStore’s “get root” method) killed in 18.0
« SPTM Iintroduced in 17.0 (replaces PPL)

* No more public exploits
* Public kernel exploitation is as good as dead
* Eta never?

Thanks for your attention

Any questions?

