
State of iOS Jailbreaking
in 2025

Lars Fröder

Cellebrite Labs

About Me

• Security Researcher from Germany

• Started iOS development journey in
2017, research in 2022

• Employed at Cellebrite Labs

• Developed various iOS jailbreak
system extensions (“tweaks”)

• Developer of TrollStore and
Dopamine Jailbreak

opa334@infosec.exchange

@opa334.bsky.social

Motivations

• Run unsigned / third party software on iPads and iPhones

• Enable system introspection capabilities (e.g. Frida, lldb)

• Load system extensions / tweaks

Agenda

• Code Signing on iOS

• TrollStore

• Dopamine

Agenda

• Code Signing on iOS

• TrollStore

• Dopamine

Code Signing on iOS

• Used for Apple to maintain control over all authorized software

• 🤑

• Main thing that a jailbreak needs to bypass

• Enforces all executables are either
• Shipped with the operating system (Ad-hoc signed)

• Distributed on the App Store (Apple signed)

• Installed via a Developer account (Developer signed)

Code Signature

MachO Binary Code Signature Superblob

CSSLOT_CODEDIRECTORY

CSSLOT_ALTERNATE_CODEDIRECTORIES | 0

CSSLOT_ALTERNATE_CODEDIRECTORIES | n

CSSLOT_ENTITLEMENTS

CSSLOT_DER_ENTITLEMENTS

CSSLOT_SIGNATURESLOT

mach_header

LC_SEGMENT_64

LC_SEGMENT_64

LC_SEGMENT_64

LC_SEGMENT_64

(…)

LC_CODE_SIGNATURE

(…)

<segments, sections>

<code signature>

Code Signature: Code Directory

• Contain hashes of all executable pages within the binary

• Additionally contain hashes of other relevant data (e.g.
CSSLOT_ENTITLEMENTS)

• One code directory has one hash type, (e.g. SHA1, SHA256, …)

• One binary can have multiple code directories with different hash types

Code Signature: Code Directory

MachO Binary Code Signature Superblob

CSSLOT_CODEDIRECTORY

CSSLOT_ALTERNATE_CODEDIRECTORIES | 0

CSSLOT_ALTERNATE_CODEDIRECTORIES | n

CSSLOT_ENTITLEMENTS

CSSLOT_DER_ENTITLEMENTS

CSSLOT_SIGNATURESLOT

(…)

hashType = SHA1

(…)

SHA1(ENTITLEMENTS)

SHA1(page[0])

SHA1(page[1])

(…)

SHA1(page[n])

(…)

Code Directory

mach_header

LC_SEGMENT_64

LC_SEGMENT_64

LC_SEGMENT_64

LC_SEGMENT_64

(…)

LC_CODE_SIGNATURE

(…)

<segments, sections>

<code signature>

Code Signature: Code Directory

MachO Binary Code Signature Superblob

CSSLOT_CODEDIRECTORY

CSSLOT_ALTERNATE_CODEDIRECTORIES | 0

CSSLOT_ALTERNATE_CODEDIRECTORIES | n

CSSLOT_ENTITLEMENTS

CSSLOT_DER_ENTITLEMENTS

CSSLOT_SIGNATURESLOT

mach_header

LC_SEGMENT_64

LC_SEGMENT_64

LC_SEGMENT_64

LC_SEGMENT_64

(…)

LC_CODE_SIGNATURE

(…)

<segments, sections>

<code signature>

(…)

hashType = SHA256

(…)

SHA256(ENTITLEMENTS)

SHA256(page[0])

SHA256(page[1])

(…)

SHA256(page[n])

(…)

Code Directory

Code Signature: Entitlements

• Describe the permissions of the binary
• Kernel drivers it can access

• File paths it can read/write to/from

• Whether the binary is sandboxed

• Whether the binary may be debugged by other processes

• etc…

• Can be checked both by the Kernel itself and by other processes

Code Signature: Entitlements

MachO Binary Code Signature Superblob

CSSLOT_CODEDIRECTORY

CSSLOT_ALTERNATE_CODEDIRECTORIES | 0

CSSLOT_ALTERNATE_CODEDIRECTORIES | n

CSSLOT_ENTITLEMENTS

CSSLOT_DER_ENTITLEMENTS

CSSLOT_SIGNATURESLOT

Entitlements (plist)
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>com.apple.developer.usernotifications.communication

</key>

<true/>

<key>com.apple.developer.avfoundation.multitasking-

camera-access</key>

<true/>

<key>application-identifier</key>

<string>53Q6R32WPB.com.hammerandchisel.discord</string>

<key>aps-environment</key>

<string>production</string>

<key>com.apple.developer.storekit.request-data</key>

<true/>

<key>com.apple.developer.associated-domains</key>

<array>

<string>applinks:discord.com</string>

<string>applinks:discordapp.com</string>

<string>applinks:discord.gg</string>

<string>applinks:discord.new</string>

<string>applinks:discord.gift</string>

<string>applinks:discord.gifts</string>

<string>applinks:discord.co</string>

<string>applinks:*.discord.com</string>

<string>applinks:*.discordapp.com</string>

<string>applinks:*.discord.gg</string>

<string>applinks:*.discord.new</string>

<string>applinks:*.discord.gift</string>

<string>applinks:*.discord.gifts</string>

<string>applinks:*.discord.co</string>

<string>applinks:l.discord.com</string>

<string>applinks:discordapp.page.link</string>

<string>webcredentials:discord.com</string>

<string>webcredentials:*.discord.com</string>

</array>

<key>com.apple.security.application-groups</key>

<array>

<string>group.com.hammerandchisel.discord</string>

</array>

<key>com.apple.developer.team-identifier</key>

<string>53Q6R32WPB</string>

</dict>

</plist>

mach_header

LC_SEGMENT_64

LC_SEGMENT_64

LC_SEGMENT_64

LC_SEGMENT_64

(…)

LC_CODE_SIGNATURE

(…)

<segments, sections>

<code signature>

Code Signature: Entitlements

MachO Binary Code Signature Superblob

CSSLOT_CODEDIRECTORY

CSSLOT_ALTERNATE_CODEDIRECTORIES | 0

CSSLOT_ALTERNATE_CODEDIRECTORIES | n

CSSLOT_ENTITLEMENTS

CSSLOT_DER_ENTITLEMENTS

CSSLOT_SIGNATURESLOT

Entitlements (DER)

mach_header

LC_SEGMENT_64

LC_SEGMENT_64

LC_SEGMENT_64

LC_SEGMENT_64

(…)

LC_CODE_SIGNATURE

(…)

<segments, sections>

<code signature>

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>com.apple.developer.usernotifications.communication

</key>

<true/>

<key>com.apple.developer.avfoundation.multitasking-

camera-access</key>

<true/>

<key>application-identifier</key>

<string>53Q6R32WPB.com.hammerandchisel.discord</string>

<key>aps-environment</key>

<string>production</string>

<key>com.apple.developer.storekit.request-data</key>

<true/>

<key>com.apple.developer.associated-domains</key>

<array>

<string>applinks:discord.com</string>

<string>applinks:discordapp.com</string>

<string>applinks:discord.gg</string>

<string>applinks:discord.new</string>

<string>applinks:discord.gift</string>

<string>applinks:discord.gifts</string>

<string>applinks:discord.co</string>

<string>applinks:*.discord.com</string>

<string>applinks:*.discordapp.com</string>

<string>applinks:*.discord.gg</string>

<string>applinks:*.discord.new</string>

<string>applinks:*.discord.gift</string>

<string>applinks:*.discord.gifts</string>

<string>applinks:*.discord.co</string>

<string>applinks:l.discord.com</string>

<string>applinks:discordapp.page.link</string>

<string>webcredentials:discord.com</string>

<string>webcredentials:*.discord.com</string>

</array>

<key>com.apple.security.application-groups</key>

<array>

<string>group.com.hammerandchisel.discord</string>

</array>

<key>com.apple.developer.team-identifier</key>

<string>53Q6R32WPB</string>

</dict>

</plist>

DER

Code Signature: Signature Blob

• Contains cryptographically signed hash of code directories

• Signed with Apple or Developer cert

• Adhoc signed binaries do not have a signature, those are verified via the
TrustCache

• Can be signed by multiple signers

Code Signature: Code Directory

Hash

(…)

hashType = SHA256

(…)

SHA256(ENTITLEMENTS)

SHA256(page[0])

SHA256(page[1])

(…)

SHA256(page[n])

(…)

Code Directory

CDHash_SHA256 = SHA256

• Uniquely identifies
executable / library

• Hash of all other hashes
and metadata -> Ensures
integrity

• Contained within Signature
Blob, recalculated and
compared when validating
file

Code Signature: Signature Blob

MachO Binary Code Signature Superblob

CSSLOT_CODEDIRECTORY

CSSLOT_ALTERNATE_CODEDIRECTORIES | 0

CSSLOT_ALTERNATE_CODEDIRECTORIES | n

CSSLOT_ENTITLEMENTS

CSSLOT_DER_ENTITLEMENTS

CSSLOT_SIGNATURESLOT

CMS Blob

mach_header

LC_SEGMENT_64

LC_SEGMENT_64

LC_SEGMENT_64

LC_SEGMENT_64

(…)

LC_CODE_SIGNATURE

(…)

<segments, sections>

<code signature>

<CDHash_SHA256>

<CDHash_SHA1>
DER

(…)

(…)

Signed by

Private Key

Code Signature Enforcement

• Every executables requires a valid code signature to run
• System executables: Ad hoc signed, verified by CDHash in trust cache

• AppStore executables: Signed by Apple on submission using “Apple
iPhone OS Application Signing” certificate

• Xcode App executables: Signed by Developer certificate issued by
Apple, extremely limited

• Checked by the Kernel on execution
• During posix_spawn or execve syscall

Code Signing Enforcement: Trust Level

• Trust Levels are used for isolation between different process
“types”

• A process cannot dlopen / mmap a library with a lower trust
level than the executable that the process was spawned from

• A process cannot obtain a task port (e.g. debugging rights) for a
process with a higher trust level than the executable that the
caller process was spawned from

Code Enforcement Paths: System

Binaries

• Kernel checks whether CDHash of binary is considered
trustworthy, this is true if

• The CDHash is contained within a static list of CDHashes shipped with
the operating system

• The CDHash is contained within one of multiple dynamic lists of
CDHashes that can be loaded by Xcode at runtime

• If it finds a match, the process is spawned with a trust level of 8

Code Enforcement Paths: App

Store Binaries

• Kernel calls into Apple Mobile File Integrity driver

• Apple Mobile File Integrity calls into CoreTrust driver

• CoreTrust parses signature and ensures the binary is validly
signed by App Store certificate (public key embedded into
operating system)

• If it is, the process is spawned with a trust level of 7

Code Enforcement Paths:

Developer Signed

• Only allowed when developer mode is enabled

• If App Store check fails, CoreTrust contacts the userspace
service amfid to verify whether a valid developer certificate
signs the binary

• If this check is successful, the process is spawned with a trust
level of 5

Code Enforcement Paths

Trust

Level

Type Checked by

8 In TrustCache Kernel (CSM / PMAP_CS / TXM)

7 App Store CoreTrust

5 Developer Signed amfid

(Simplified for better accessibility)

Agenda

• Code Signing on iOS

• TrollStore

• Dopamine

TrollStore (iOS 14.0 - 16.6.1, 17.0)

CVE-2023-41991

• Patched in iOS 17.0.1 and 16.7

• Reconstructed through patchdiffing by @alfiecg_dev and me

CVE-2023-41991

• Within the CoreTrust Kernel Extension, which is responsible for checking
the code signature of App Store apps

• Called by AMFI (Apple Mobile File Integrity) Kernel Extension

• One of the most complex bugs I have ever seen

• Multiple quirks combined allow a fakesigned binary to run
• CoreTrust only checks whether the last signer of a signature is valid (or rather, uses

the same error variable for every signer, meaning it will just be overwritten by the last
check)

• CoreTrust returns the CodeDirectory hash of the first signer back to AMFI

• CoreTrust only passes the first signer to the function that checks whether the binary is
App Store signed

CVE-2023-41991: Code Directory

• Code Directory stolen from a
validly signed App Store app

• Type: SHA1

• None of contained hashes
match our binaries
executable pages, nor our
entitlements or anything else

Code Signature Superblob

CSSLOT_CODEDIRECTORY

CSSLOT_ALTERNATE_CODEDIRECTORIES | 0

CSSLOT_ALTERNATE_CODEDIRECTORIES | n

CSSLOT_ENTITLEMENTS

CSSLOT_DER_ENTITLEMENTS

CSSLOT_SIGNATURESLOT

CVE-2023-41991: Alternate Code Directory

• Actual code directory that’s
valid for our binary

• Type: SHA256 (Kernel
prefers SHA256 over SHA1)

• Nothing special about it,
really

Code Signature Superblob

CSSLOT_CODEDIRECTORY

CSSLOT_ALTERNATE_CODEDIRECTORIES | 0

CSSLOT_ALTERNATE_CODEDIRECTORIES | n

CSSLOT_ENTITLEMENTS

CSSLOT_DER_ENTITLEMENTS

CSSLOT_SIGNATURESLOT

CVE-2023-41991: Signature Slot

• Signer 1 (TrollStore certificate)
• Our certificate, signed data controlled by

us

• Valid hash for main code directory (SHA1)

• Valid hash for alternate code directory
(SHA256)

• Signer 2 (Apple certificate)
• Stolen from the same App Store app

binary as the main code directory

• Valid hash for main code directory (SHA1)

• Invalid hash for alternate code directory
(SHA256)

Code Signature Superblob

CSSLOT_CODEDIRECTORY

CSSLOT_ALTERNATE_CODEDIRECTORIES | 0

CSSLOT_ALTERNATE_CODEDIRECTORIES | n

CSSLOT_ENTITLEMENTS

CSSLOT_DER_ENTITLEMENTS

CSSLOT_SIGNATURESLOT

CVE-2023-41991: Entitlements

• Fully attacker controlled since their
hashes are in the alternate code
directory (SHA256) that we also
fully control

• Gives you arbitrary permissions to
do anything you want*

• *Except anything involving
overtaking system processes,
since these are isolated from the
rest of the system and the system
thinks we are an App Store app

Code Signature Superblob

CSSLOT_CODEDIRECTORY

CSSLOT_ALTERNATE_CODEDIRECTORIES | 0

CSSLOT_ALTERNATE_CODEDIRECTORIES | n

CSSLOT_ENTITLEMENTS

CSSLOT_DER_ENTITLEMENTS

CSSLOT_SIGNATURESLOT

POC

Big shoutout to @alfiecg_dev!!!

TrollStore

• App-Installer that itself is signed with CoreTrust bug

• Gets root via persona-mgmt entitlement

• Accepts unsigned IPA files (apps) to be opened within it

• Applies CoreTrust bug on all executables in the app bundle

• Places app on the filesystem

• Adds it to the icon cache

• App appears on home screen and is usable like any other app

TrollStore

• Not persistent (unless chained with
separate persistence bug)

• All unsigned binaries can execute

• Able to spawn launch daemons

• System wide tweak injection

vs. Jailbreak

• Persistent

• Only explicitly signed binaries can
execute

• Not able to spawn launch daemons

• No system wide tweak injection

Agenda

• Code Signing on iOS

• TrollStore

• Dopamine

Challenges of Modern Jailbreaks

• Kernel code is read only, enforced via hardware (KTRR)

• Some pointers are protected by pointer authentication (PAC)

• Some sensitive pages are protected by the Page Protection
Layer (PPL)

Implementing a Modern Jailbreak

• Data-only

• Instead of hooking kernel code, hook userspace code

• Stash exploit primitives into a server, then offer various
operations to clients (other processes)

• Assumptions
• Kernel read/write primitive (acquired via exploit)

• PPL bypass (required for codesigning bypass)

Implementing a Modern Jailbreak

• Kernel Exploit: kfd landa (CVE-2023-41974)
• Supports iOS 15.0 - 16.6.1

• PPL Bypass: Operation Triangulation (CVE-2023-38606)
• Supports iOS 15.0 - 16.5(.1)

• End result: Jailbreak for iOS 15.0 - 16.5 (all devices)

Code Signature Enforcement

• Every executables requires a valid code signature to run
• System executables: Ad hoc signed, verified by CDHash in TrustCache

• AppStore executables: Signed by Apple on submission using “Apple
iPhone OS Application Signing” certificate

• Xcode App executables: Signed by Developer certificate issued by
Apple, extremely limited

• Checked by the Kernel on execution
• During posix_spawn or execve syscall

Recall from earlier slide

Static TrustCache

• Linked list of arrays that
contain trustworthy CDHashes

• Embedded in operating
system

• Protected by KTRR 🙅♂️

CDHash(</sbin/launchd>)

CDHash(</usr/lib/dyld>)

CDHash(</usr/libexec/installd>)

(…)

Dynamic TrustCache

• Linked list of arrays of
CDHashes from binaries
inside Xcode debugging
image

• Loaded at runtime when
Xcode prepares debugger
support

• Protected by PPL 🤑

CDHash(</Developer/usr/bin/debugserver>)

CDHash(</Developer/usr/lib/libsysmon.dylib>)

CDHash(</Developer/usr/libexec/sysmond>)

(…)

Bypassing Code Signing with PPL R/W

• Allocate our own TrustCache
structure

• Insert it into the linked list

• Kernel now considers our
executables trustworthy and
allows them to be executed

• Libraries in TrustCache are
allowed to be mapped system
wide

CDHash(<jb/libjailbreak.dylib>)

CDHash(<jb/systemhook.dylib>)

CDHash(<jb/jbctl>)

(…)

Controlled by us

Automatic Trust Caching

• Currently we can add files to TrustCache manually, but we want
to fully bypass codesigning system wide (for all files)

• Idea
• System tries to execute binary at path x or tries to map library at path x

• Before being launched / mapped, CDHash of binary / library at path x is
automatically added to TrustCache

• How can we archive this in practice?

launchdhook.dylib

• Injected into launchd (pid 1) process at jailbreak time

• Manages PPL R/W primitives

• Provides ”jailbreak server” via mach and XPC, accessible
system wide

• Also solves some other miscellaneous tasks, like loading third
party launch daemons

systemhook.dylib

• Injected by launchdhook into every process spawned by
launchd

• Reinjects itself into any other child process

• Hooks posix_spawn and execve syscalls to add the target
CDHash to TrustCache by sending it to launchdhook via IPC

dyldhook

• Static patch of dynamic linker (dyld)

• Make DYLD_INSERT_LIBRARIES environment variable work

• Talks to launchdhook IPC to patch some stuff about the process
and weaken the sandbox

• fcntl hook to make attaching any signature to a library work
• Calculate CDHash of signature to be attached and send it to

launchdhook, which will add it to TrustCache

• Effectively disables library validation

posix_spawn hook

• Send path to launchdhook, which will calculate the CDHash of
the file and add it to TrustCache

• Modify envp (child process environment) to insert
“DYLD_INSERT_LIBRARIES=systemhook.dylib”

Automatic Trust Caching: Summary

• In every process:
• fcntl hook (in dyld) adds the CDHash of any library that’s about to be

mapped to TrustCache

• posix_spawn hook (in systemhook.dylib) adds the CDHash of any
binary that’s about to be spawned to TrustCache

• Result: Code signing is bypassed; any binary can execute ✅

Enabling Tweak Injection

• In systemhook: dlopen(“/var/jb/usr/lib/TweakLoader.dylib”)

• External package will provide tweak loader library that takes
care of any remaining logic

• Will parse third party extensions in
“/var/jb/System/Library/MobileSubstrate/DynamicLibraries” and
inject them as neccessary

Dopamine (iOS 15.0 - 16.5)

Wen eta iOS 17/18 jailbreak???

• Physical use after free bug class (used in kfd) killed in 17.3

• Root helpers (TrollStore’s “get root” method) killed in 18.0

• SPTM introduced in 17.0 (replaces PPL)

• No more public exploits

• Public kernel exploitation is as good as dead

• Eta never?

Thanks for your attention
Any questions?

