
BUILDING GLITCH-RESISTANT
FIRMWARE
Practical Software Countermeasures
for Hardware glitch attacks

Technical Expert, Siemens
Arshid Shyam Kumar

NULLCON GOA 2025

Student, IIIT-Bangalore
Chinmay Krishna R

Arshid Shyam Kumar
• Hardware security, cloud security at Siemens

Technology.
• Previously Cybersecurity work at NCIIPC and

secure embedded systems development at
ISRO.

arshid-shyam.kumar@siemens.com

Chinmay Krishna R
• Junior year integrated Master's student in

Electronics and Communications Engineering at
IIIT-Bangalore

• Hardware security intern at Siemens
Technology - Summer 2024.

• Digital VLSI design, FPGA’s, ASIC’s and
embedded systems

Chinmay.Krishna@iiitb.ac.in

What are glitch attacks?
• Glitches manipulate hardware behavior to extract

sensitive data, bypass authentication, or alter
system functionality.

• These attacks exploit the physical nature of
hardware, making them a significant threat to
secure systems.

• Eg: voltage and clock glitching attacks

Voltage glitch
• Apply glitch briefly – Long enough to induce a faulty state

but short enough to prevent a reset.

• Precise timing – Target vulnerable moments for effective
glitching.

• Modify components – Desolder/bypass decoupling
capacitors if needed.

Image Ref:
nccgroup

https://www.nccgroup.com/us/research-blog/an-introduction-to-fault-injection-part-13/

ChipWhisperer
Lite Kit
• One of the most popular open-source tools

(hardware, software, firmware & FPGA code) for
hardware security.

• Mainly used for side-channel power analysis
and glitching attack.

• This research used the CW-lite with the
provided STM32F3 32-bit target board.

Chipwhisper Lite kit

External boards

Performing
the glitch

What do glitches do to the code?

TAKE ADVANTAGE OF THIS FAULT TO SKIP INSTRUCTIONS FROM
THE CRITICAL SECTION CODE

Password Bypass

Glitch here

The glitch skips the
password check altogether

Countermeasures
Hardware Methods Software Methods

• Brown-out Detection (BOD) circuitry

• Clock and Power Integrity Checks

• Shadow registers can improve fault
resiliency

• Hardware-based pointer authentication

• Redundant Computation

• Timing Randomization

• Control Flow Integrity (CFI)

• Runtime Integrity Checks

HARDware methods

• Long redesign lead times

• Significant production cost overhead

• Difficult retrofits for existing designs

• Limited post-deployment updates

Image Ref:
Sciencedirect

https://www.sciencedirect.com/topics/computer-science/shadow-register

Software
Countermeasures

The way you write code matters!

Attempt Glitch Success Glitch Failure

1 82 6796

2 65 7345

3 74 7145

Simple check

Attempt Glitch Success Glitch Failure

1 1 8369

2 0 9203

3 0 9203

Volatile loop counter

Why did that happen?
Non volatile Volatile

84:simpleserial-glitch.c **** for(cnt = 0; cnt < 5; cnt++){
264 .loc 1 84 5 view .LVU45
265 00f0 F901 movw r30,r18
266 00f2 DE01 movw r26,r28
267 00f4 1196 adiw r26,1
268 00f6 2B5F subi r18,-5
269 00f8 3F4F sbci r19,-1
271 .L14:

84:simpleserial-glitch.c **** for(cnt = 0; cnt < 5; cnt++){
269 00f6 1F82 std Y+7,__zero_reg__
270 00f8 1886 std Y+8,__zero_reg__
271 .loc 1 84 5 view .LVU48
272 00fa 41E0 ldi r20,lo8(1)
274 .L13:
275 .loc 1 84 22 is_stmt 1 discriminator 1 view
.LVU49
276 00fc 2F81 ldd r18,Y+7
277 00fe 3885 ldd r19,Y+8
278 0100 2530 cpi r18,5
279 0102 3105 cpc r19,__zero_reg__
280 0104 04F0 brlt .L15

MAJOR CHANGES IN
ASSEMBLY

VOLATILE

Attempt Glitch Success Glitch Failure

1 1 14964

2 0 14944

3 0 14915

Duplicating variables

DUPLICATIONWhy did that happen?

• Duplicate password variable for strcmp.

• Extra verification layer resists glitches.

• Corruption triggers early strcmp failure.

• More complexity requires longer bypass.

Attempt Glitch Success Glitch Failure

1 0 4275

2 0 4265

3 0 4225

Inverting variables

INVERTINGWhy did that happen?

• Inverted password outside the trigger.

• Secondary inversion inside trigger_high().

• Multiple operations need perfect timing.

• Added strcmp increases glitch difficulty.

Attempt Glitch Success Glitch Failure

1 0 8012

2 0 7958

3 0 8115

Masking variables

MASKINGWhy did that happen?
• Password masked by multiplying characters outside glitch.

• Masked password made again inside glitch

• Glitch must hit masking and comparison.

• Double masking increases glitch difficulty.

Attempt Glitch Success Glitch Failure

1 2731 9966

2 2393 10035

3 2408 9912

Negating the logic

NEGATINGWhy did that happen?

• Single fault can bypass check

• Lack of strong failure handling

• Early termination exploit

Results
Normalized Glitch attacks for different countermeasures

These work best

*All tests were ran for 10 minutes each

1

Arm’s TrustedFirmware

Software Glitch Defenses
in the Real World

2

Open-Source Tools/Libraries

3

Bootloader to implement
mitigations against glitching
attacks

WolfBoot & Industry
AdoptionUse FIH library for glitch

resilience, now a standard
recommendation

GlitchResistor, ChipArmour etc.

1

Faults Are Physical,
Mitigations Are Logical

Key Takeaways

2

Minimal Code Tweaks → Big
Gains

3

Secure Coding & use of
Libraries

DO YOU HAVE ANY QUESTIONS?

THANK YOU!

