l1ackerone

MLOps Under Attack:
Threat Modeling Modern Al Systems

Sandeep Singh

About Me

e Director, Security Strategy & Operations @
Interests

e Appsec, cloud security, vulnerability management, response
e \ulnerability disclosures, coordination, bug bounties

https://www.hackerone.com/

Agenda

Overview of ML lifecycle, platforms, and supply chain
Attack surface and attack scenarios

Building for security (defensive practices)

Example Tabletop Scenarios

Understanding MLOps

MLOps is a unified engineering
practice and cultural approach
that integrates the ML system
development (Dev) and ML
system operation (Ops).

Technology

MLOps

Understanding MLOps

Iterative Process

|

Plan / Design Build / Train Evaluate / Test Deploy Manage / Monitor

Problem framing, Write code to Test for quality, Deploy to System wide

collect, clean, develop model, accuracy and production, monitoring and

process data, fine-tune model, performance. client-side apps, debugging for model

feature engineering Evaluate model APIs, etc. reliability and overall
performance Infrastructure health of the system
against set eval management

criteria. Select
model

Understanding MLOps

Pre-Training

Training

Inference

Plan / Design

Problem framing,
collect, clean,
process data, feature
engineering

Build / Train

Write code to
develop model,
fine-tune model,

Evaluate / Test

Test for quality,
accuracy and
performance.
Evaluate model
performance
against set eval
criteria. Select
model

Deploy

Deploy to
production,
client-side apps,
APIs, etc.
Infrastructure
management

Manage / Monitor

System wide
monitoring and
debugging for model
reliability and overall
health of the system

Understanding MLOps

= Jupyter
-> Hugging Face
2> Git
- Pandas
Pre-Training Training Inference

Plan / Design

Problem framing,

collect, clean,
process data,

feature engineering

Build / Train

Write code to
develop model,
fine-tune model,

Evaluate / Test

Test for quality,
accuracy and
performance.
Evaluate model
performance
against set eval
criteria. Select
model

Deploy

Deploy to
production,
client-side apps,
APIs, etc.
Infrastructure
management

Manage / Monitor

System wide
monitoring and
debugging for model
reliability and overall
health of the system

Understanding MLOps

-> Ju pyter -> PyTO rCh,
> Git MLflow
Kubeflow
- Pandas
Weights & Biases
Pre-Training Training Inference

Plan / Design

Problem framing,
collect, clean,
process data,
feature engineering

Build / Train

Write code to
develop model,
fine-tune model,

Evaluate / Test

Test for quality,
accuracy and
performance.
Evaluate model
performance
against set eval
criteria. Select
model

Deploy

Deploy to
production,
client-side apps,
APIs, etc.
Infrastructure
management

Manage / Monitor

System wide
monitoring and
debugging for model
reliability and overall
health of the system

Understanding MLOps

> Jupyter > PyTorch, Alibi
- Hugging Face TensorFlow MLflow
2> Git MLflow Weights &
- Pandas Ku?eﬂow , Biases
Weights & Biases Eai
airlearn
Pre-Training Training Inference

Plan / Design

Problem framing,
collect, clean,
process data,
feature engineering

Build / Train

Write code to
develop model,
fine-tune model,

Evaluate / Test

Test for quality,
accuracy and
performance.
Evaluate model
performance
against set eval
criteria. Select
model

Deploy

Deploy to
production,
client-side apps,
APIs, etc.
Infrastructure
management

Manage / Monitor

System wide
monitoring and
debugging for model
reliability and overall
health of the system

Understanding MLOps

- Jupyter = PyTorch, - Alibi - Docker,
- Hugging Face TensorFlow > MLflow Kubernetes
2> Git > MLlflow = Weights & - MLFlow
> Pandas \If\;ﬁe:?sw& Sinses Biases > Kubeflow
9 -> Fairlearn -> Seldon Core
Pre-Training Training Inference

Plan / Design

Problem framing,
collect, clean,
process data,
feature engineering

Build / Train

Write code to
develop model,
fine-tune model,

Evaluate / Test

Test for quality,
accuracy and
performance.
Evaluate model
performance
against set eval
criteria. Select
model

Deploy Manage / Monitor
Deploy to System wide
production, monitoring and
client-side apps, debugging for model
APIs, etc. reliability and overall
Infrastructure health of the system
management

Understanding MLOps

- Jupyter - PyTorch, - Alibi -> Docker, - Splunk
- Hugging Face TensorFlow > MLflow Kubernetes > ELK
> Git > MLiflow = Weights & - MLFlow - Prometheus
- Pandas \If\;ﬁe:fsw& Sinses Biases > Kubeflow > Grafana
9 -> Fairlearn -> Seldon Core
Pre-Training Training Inference

Plan / Design

Problem framing,
collect, clean,
process data,
feature engineering

Build / Train

Write code to
develop model,
fine-tune model,

Evaluate / Test

Test for quality,
accuracy and
performance.
Evaluate model
performance
against set eval
criteria. Select
model

Deploy Manage / Monitor
Deploy to System wide
production, monitoring and
client-side apps, debugging for model
APIs, etc. reliability and overall
Infrastructure health of the system
management

Understanding MLOps

- Jupyter - PyfTorch, = Alibi > Docker, Kubernetes = Splunk
> Hugging Face TensorFlow > MLrow . > MLFlow N ELK
) MLflow > Weights & Biases = Kubeflow > P th
> O = Kubeflow > Fairlearn - Seldon Core et
- Pandas - Weights & Biases - Grafana
Cloud Pipelines (Amazon Sagemaker, Azure Al, Google Cloud Vertex Al)
Pre-Training Training Inference

Plan / Design

Problem framing,
collect, clean,
process data,
feature engineering

Build / Train

Write code to
develop model,
fine-tune model,

Evaluate / Test

Test for quality,
accuracy and
performance.
Evaluate model
performance
against set eval
criteria. Select
model

Deploy

Deploy to
production,
client-side apps,
APIs, etc.
Infrastructure
management

Manage / Monitor

System wide
monitoring and
debugging for model
reliability and overall
health of the system

Understanding MLOps

The ML Model Development Lifecycle

Datasets, models, Production Inference
frameworks

Download Model

Model Source Model Train Deploy to Model Hub

Plan / Design Build / Train Evaluate / Test Deploy Manage / Monitor

Problem framing, Write code to Test for quality, Deploy to System wide

collect, clean, develop model, accuracy and production, monitoring and

process data, fine-tune model, performance. client-side apps, debugging for model

feature engineering Evaluate model APls, etc. reliability and overall
performance against Infrastructure health of the system
set eval criteria. management

Select model

Understanding MLOps

The ML Model Development Lifecycle

Load and prepare the data

data = pd.read_csv('customer_data.csv')

X = data.drop(‘churn', axis=1) # Features
y = datal'churn'] # Target variable

Handle categorical features
X = pd.get_dummies(X, drop_first=True)

Datasets, models, # Split the data
frameworks X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Scale features

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

Train the model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model. fit(X_train_scaled, y_train)

Model Train

Make predictions
y_pred = model.predict(X_test_scaled)

Evaluate the model

accuracy = accuracy_score(y_test, y_pred)
print(f'Model accuracy: {accuracy:.4f}')
print(classification_report(y_test, y_pred))

Save the model

import joblib
joblib.iﬁﬁﬁﬂﬁodel, *churn_prediction_model.pk1'])

Understanding MLOps

The ML Model Development Lifecycle

ml (59 2100 Experiments Models @ % GitHub Docs

Registered Models

® Q

M Od el Re iStr Name =T Latest version Aliased versions Created by Last modified
g y iris_model_dev Version 17 2023-09-25 12:50:...
iris_model_prod Version 11 ; Version 11 [+3 2023-10-26 17:10:...
iris_model_staging Version 11 2023-09-25 12:46:...
Dep|oy to Mode| Hub iris_model_testing Version 1 2023-09-27 13:17:...
mnist_model_dev Version 12 2023-09-25 12:39:...

mnist_model_prod Version 8 [QREILLETYS: Version 8 (+1 2024-01-19 10:35:...

mnist_model_staging Version 8 2023-09-2512:5

New model registry Ul @) 25 [page

Understanding MLOps

The ML Model Development Lifecycle

Input
\/ Embedded into an app
Model Serving /
Production Inference l

Output generation Served as an API

Understanding LLMOps

e Focus on LLM development and managing model in production
Broad design of entire end-to-end application (front-end,
back-end, data engineering, etc.)

Experimentation on foundation models

Fine tuning

Monitoring

Evaluate generative output

Understanding LLMOps

Orchestration

Context construction
e.g. RAG, agent,
query rewriting

Y

Cao;he }‘

A

Input guardrails
e.g. Pll redaction

Cached response 3
Databases

e.g. documents,

tables, chat history,
vectorDB

e.g. vector search,
run SQL queries,
web search

" Read-only Actions |

Write Actions
e.g. update orders,
send emails

Y

Output guardrails
Safety/verification

Final response - Structured outputs

Logging, monitoring, and analytics

Model gateway
Model catalog, access
token management, ...

Routing

Generation

Scoring

-

Example
generative Al
platform
architecture

https://huyenchip.com/2024/07/25/genai-platform.html

Attack Scenarios

Data poisoning
Model inversion
Stealing
sensitive data

K2

-
->
-
->
-

Data extraction - Model poisoning
Model extraction -> Model extraction
Backdooring model - Container escapes

Code execution
3rd Party Software Supply
Chain

Plan / Design

Problem framing,
collect, clean,
process data,
feature engineering

Build / Train Evaluate / Test Deploy Manage / Monitor

Write code to Test for quality, Deploy to System wide

develop model, accuracy and production, monitoring and

fine-tune model, performance. client-side apps, debugging for model
Evaluate model APIs, etc. reliability and overall
performance Infrastructure health of the system
against set eval management

criteria. Select
model

Attack Scenarios

e C(Credentials compromise to gain access in the ML pipeline
o Attackers steal authentication credentials through phishing or exposed
secrets, gaining access to inject poisoned data or steal proprietary
models.

e Misconfigured access control leads to privilege escalation and

lateral movement
o Attackers exploit overly permissive roles or improperly segmented
environments to escalate privileges and move laterally across ML
infrastructure.

Attack Scenarios

e Supply Chain attacks through third party libraries, data
o Malicious code in dependencies or poisoned public datasets compromise
model integrity, enabling backdoors or data leakage.
e Vulnerabilities in MLOps platforms

o Insecure container configurations, deserialization vulnerabilities, or
insufficient isolation in ML platforms allow arbitrary code execution or
access to sensitive artifacts.

Attack Scenarios

From MLOps to MLOops - Exposing the Attack Surface of Machine

Learning Platforms | BlackHat USA 2024 - Security analysis of popular open
source ML platforms by JFrog research team

Abusing MLOps Platforms to Compromise ML Models and

Enterprise Data Lakes | X-Force Red research on attacks against MLOps

platforms after an attacker has obtained valid credential material. Open Source
toolkit MLOKit

https://www.youtube.com/watch?v=1dsRAEdbpq4&t=1976s&ab_channel=BlackHat
https://www.youtube.com/watch?v=1dsRAEdbpq4&t=1976s&ab_channel=BlackHat
https://www.ibm.com/downloads/documents/us-en/11630e2cbc302316?_gl=1*i7y37b*_ga*Nzg5MjYxNjU1LjE3Mzk2OTkwOTA.*_ga_FYECCCS21D*MTczOTY5OTA5MC4xLjAuMTczOTY5OTQ0NC4wLjAuMA..
https://www.ibm.com/downloads/documents/us-en/11630e2cbc302316?_gl=1*i7y37b*_ga*Nzg5MjYxNjU1LjE3Mzk2OTkwOTA.*_ga_FYECCCS21D*MTczOTY5OTA5MC4xLjAuMTczOTY5OTQ0NC4wLjAuMA..

Attack Scenarios

Attacker

1. Al inference

Replicate Cross-Tenant Attack lllustrated

request (Prompt)

LY

N
2. New inference 3. Task executes the *®
task malicious model
e >
Inference API Central Processing f Malicious Al
Endpoint Queue (Redis) Model
. 4. Model injects
5. Tempering the malicious tasks to
prompts and results of
: queue
other customers’ models
Private Al Private Al Private Al
Model Model Model
J

WIZ Research

https://www.wiz.io/blog/wiz-and-hugging-face-address-risks-to-ai-infrastructure

Attack Scenarios

Two malicious models containing reverse shell
payloads that evaded detection by exploiting limitations in Hugging Face's
Picklescan security tool.

| JFrog Research

https://www.reversinglabs.com/blog/rl-identifies-malware-ml-model-hosted-on-hugging-face
https://www.reversinglabs.com/blog/rl-identifies-malware-ml-model-hosted-on-hugging-face
https://link.mail.beehiiv.com/ss/c/u001.m5CTo68rhNghfieTCcZktlgGBl4YR3V_fVPki2l88lLSsNy2yFu1wU-FMZsrfobtMPvI1NmelAOWBpmOMg74EzIuFFqmwyCfUgBkTqnW4nQ9uwrP599HK63T9FnZ3SzdQBqkWxa4EvMSiJycxiTpslVqhzd3lc1OBpYtE-8nHv6XQwGVqA4cOLWBWZ_VAy_tiBzYFgFsNSW9XtaCIlS8eg6cIqjRtkIebeUcPrpgkTHxalVWoZuvYSEsoQzUs-cqU-QMpYyZueEPGcT7FfngkVLwr2UsMTM--0ZLR4HJrDgd927amHe32OWRVIlWYEAi/4ed/2diyVrOYRzSp1Qx0rCDsug/h57/h001.YHvPeaHJvFwjrK6MrCWrDSJJd_jE3TQm3YEQfsAQrmU
https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/
https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/

Attack Surface

e Authentication and Access Control Vulnerabilities
User token/credential stealing via phishing

Misconfigured internal network resources

Exploitation of misconfigured or overly permissive 1AM roles
Service account compromise

APl key exposures in notebooks or code repositories

O O O O O

Attack Surface

e Infrastructure Vulnerabilities
o Container escape in model training/ model serving environments
o Resource exhaustion through crafted training jobs
o Network pivoting through compromised ML instances due to insufficient
network segregation

Attack Surface

e CI/CD / Supply Chain

o Vulnerabilities in third party software components
o Exploitation of outdated dependencies in ML environments
o Implementation issues in ML Ops platforms and ML components

e API and Model Inference Vulnerabilities

o SSRF through model serving endpoints
o Prompt Injection

CVE Landscape

Notable CVEs

Local file inclusion due to path

CVE-2023-6977 |7.5 (High) Path Traversal traversal in GitHub repository
miflow/mlflow
NOI=
MLFlow CVE-2023-6018 |9.8 (Critical) OS Command Injection |via/ajax-api/2.0/mliflow/model-vers
ions/create endpoint.
Arbitrary file write via HTTP
CVE-2024-0520 |9.4 (Critical) Path Traversal — RCE |dataset source parsing, fixed in
v2.9.0.
Kubeflow CVE-2023-6570 |7.7 (High) Server-Side Request SSRF er.wabling internal network
Forgery reconnaissance.
Weights & CVE-2024-4642 9.1 (Critical) SSRF vi.a HTTP 302 Redirect mishandling allowed
Biases Redirection access to internal APIs.

Building for Security

Data Protection

e Encrypt training data and model
e Data provenance tracking to ensure integrity throughout the pipeline
o e.g., - S3 object lock, S3 versioning
e Granular access control to training data stores
e Scan data for PIl, PHI, and other sensitive data before training or fine tuning

Building for Security

Example organization wide SCP to prohibit changes to Amazon Sagemaker models inside AWS

“Statement": [[{

"Effect": "Deny",

"Action": |
"sagemaker:DeleteModel",
"sagemaker:CreateEndpoint",
"sagemaker:UpdateEndpointWeightsAndCapacities",
"sagemaker:DeleteEndpoint”,
"sagemaker:UpdateEndpoint”,
"sagemaker:AddTags",
"sagemaker:DeleteEndpointConfig",
"sagemaker:DeleteTags"

I

"Resource": "<Model ARN>"

H]

Building for Security

Code and Model

Signed commits and code reviews for all model development
Scan container images, and functions

Scan for dependencies

SBOM to understand supply chain

Test model against adversarial examples

Input validation and sanitization on inference endpoints

Rate limiting on APls

Building for Security

Infrastructure

e |aC with security checks
e Segmentation controls to prevent exfiltration
e Fine grained permissions for cloud pipelines

{
"Version": "2012-10-17",
"Statement": [
2

- "Sid": "Statementl",
"Effect": "Deny",
"Action": [
"'sagemaker:DeletePipeline"
]l
"Resource": [
"arn:aws:sagemaker: {Region}: {Account}:pipeline/{PipelineName}"
|
}
1
}
Example organization wide SCP to prevent deletion of SageMaker pipelines

Building for Security

Deve|opmev\t Environment

Doata Sources

ML bevelopment Studio

Notebook

Notebooks
Server

Container

Registry

\ Pleline Service

Code Repo Storage

Registry

Building for Security

Development Environment

Data Sources

]

!

P

ML Development Studio

Notebooks

Notebook
Server

l |

!

Container

Code Repo Regratry

Storage

___/

/7

VML Pipeline Service

/

\

l

Model
Registry

Approve

2line Model

Scheduled

Storage

Storage

Monitoring

Product::

+

Staging

Infrastructure as Cod

Auto_Scaling Group

ML Model
Endpoint

4

7

\

/

data capture
|

v

Function

Storage

K

APT
Gateway

A

Infrastructure o

Auto Scaling Gr

ML Model
Endpoint

7. N

/ data capture
)
\4

Function Storage

)

APT
Goateway

—5—

|

|

Building for Security

Development Environment

Data Sources

ML Development Studio

Notebooks

Notebook
Server

| |

|

Container

Code Repo Registry

Storage

Model
Registry

eline Model

Scheduled

Storage

Storage

Monitoring

+

Staging Environment

Infrastructure as Code

Aute Scaling Group
ML Model
Endpoint

7 N

data capture
1
v

Funetion Storage

f

APT
Gateway

Infrastruct as Code

Auto Secaling Gre up

ML Model
Endpoint

7/ N

/ data capture
1
\4

Function Storage

)

APT
Gateway

Example Tabletop Scenarios

An authentication bypass vulnerability in your model serving infrastructure
allows unauthenticated access to models and protected data used for
personalization.

An attacker has gained access to a notebook server and is attempting to use
it to pivot into more sensitive infrastructure components that host production
models.

An internal user has deployed an unauthorized shadow model that mimics
your production API but sends data to external servers for unknown purposes.

Example Tabletop Scenarios

e An attacker has achieved container escape on your ML training infrastructure
and is accessing the underlying host system to compromise other workloads.

e Your model inference API is experiencing a sophisticated distributed denial of

service attack specifically targeting your most computationally expensive
models.

Interested in Finding Bugs?

MSRC [Azure Al] -)
Google VRP [Vertex All Reporting Security Issues
And More

Amazon Web Services (AWS) is dedicated to the responsible disclosure of security vulnerabilities.
We kindly ask that you do not open a public GitHub issue to report security concerns.

1

Instead, please submit the issue to the AWS Vulnerability Disclosure Program via H:

e or send your report via

Reporting a Vulnerability

When finding a security vulnerability in MLflow, please perform the following actions: For more details’ Visit the F
. on the MLflow repository. Ensure that you use [BUG] Security Vulnerability as the title and
I bility details in the it A . . .
sunerabily detalls nthe fssuepost. . i Thank you in advance for collaborating with us to help protect our customers.
+ Send a notification to mlflow-oss-maintainers@googlegroups.com that contains, at a minimum:

o The link to the filed issue stub.

> Your GitHub handle.
Detailed information about the security vulnerability, evidence that supports the relevance of the finding and any reproducibility
instructions for independent confirmation.

Report a bug

Vulnerabilities can be reported to securit

This first stage of reporting i to ensure that a rapid validation can occur without wasting the time and effort of a reporter. Future
communication and vulnerability resolution will be conducted after validating the veracity of the reported issue.

An MLflow maintainer will, after validating the report:

« Acknowledge the bug during triage

+ Mark the issue as priority/critical-urgent ¢ In your email to the Security team, include in the subject line: Bug Bounty Program Disclose: [vulnerability]
R SR o Refer to the Rules of Engagement for additional details for reporting.

The private Security Advisory will be used to confirm the issue, prepare a fix, and publicly disclose it after the fix has been released.

https://github.com/kubeflow/pipelines/security
https://github.com/SeldonIO/seldon-core/security
https://github.com/mlflow/mlflow/security
https://github.com/aws/amazon-sagemaker-examples/security/policy

Thank You

