
SRLabs Template v12

Fuzzing Rust Smart Contracts
Writing a bug printer engine from scratch

Kevin Valerio <kevin@srlabs.de>, Daniel Schmidt <schmidt@srlabs.de>

2

A $125 million
mistake —
caused by a
simple,
overlooked flaw

Nice to meet you

3

Daniel Schmidt

Security Researcher
at SRLabs

Background in
protocol and virtual
machine security

Kevin Valerio

Security Engineer
at SRLabs

Background in
pentesting and
Web3 security

4

1. Overview

2. Background

3. Challenges

4. Solutions

5. Success

Agenda

Fuzzing identifies vulnerabilities via mutating valid program inputs

1 Mutate + run input

Observe behaviour

Fuzzing engine

Interesting
cases

4

2

3

</>

Target program

Seeds
(input queue)

Fuzzing is an
iterative loop Seed engine with valid

program input 11

23
Add inputs yielding

new coverage to input
queue

Pass mutated input to
instrumented program

target

Identify interesting
cases, e.g. crashes &

new coverage

1
2

3
4

Simplified
fuzzing
architecture

Coverage-guided
fuzzing tracks code
paths and leverages
the gathered coverage
to generate new test
cases. To enable
coverage-guided
fuzzing, we need to
instrument the target

5

6

Instrument the target by injecting callbacks to enable coverage-guided fuzzing

1 Identification of basic blocks

Target instrumentation and coverage callbacks

2 Insertion of fuzzer callback at every basic block

3 Callbacks write to coverage map during execution

4 Evaluation of coverage by the fuzzing engine

void parse_input(char *input) {
 if (input[0] == ‘F’) {
 __sanitizer_cov_trace_pc()
 if (input[1] == ‘U’) {
 __sanitizer_cov_trace_pc()
 if (input[2] == ‘Z’) {
 __sanitizer_cov_trace_pc()
 if (input[3] == ’Z’) {
 __sanitizer_cov_trace_pc()
 // Crash here

void parse_input(char *input) {
 if (input[0] == ‘F’) {
 if (input[1] == ‘U’) {
 if (input[2] == ‘Z’) {
 if (input[3] == ’Z’) {
 // Crash here

Target Code

Instrumented Code

Instrumentation example

7

ink! smart-contracts are permissionless programmable extensions deployed on the blockchain

#[ink::contract]
mod dummy {
 #[ink(storage)]
 pub struct MyContract {
 state: u32,
 }

 #[ink(message)]
 pub fn msg(&mut self, data: [u8]) {
 if data.len() < 7 {
 if data[0] == b'f’ {

 . . .

Pallet Assets

Pallet Identity

Pallet Contract

upload_contract
instantiate_contract
call_message
…

P2P
networking

Host API

get_storage set_storage

debug_msg terminate

transfer. . .

Off-chain: Load and compile ink! contract On-chain: Execute ink! contract on Substrate-based
chain

Wasm blob

▪ Smart contracts is permissionless code running inside the blockchain
▪ ink! is a programming language for smart contracts within the Polkadot ecosystem
▪ Being able to execute cross-chain transactions from ink! makes it special within the ecosystem of smart contracts

Architecture

Description

8

We present Phink, a coverage guided fuzzer for ink! smart contracts

9

1. Overview

2. Background

3. Challenges

4. Solutions

5. Success

Agenda

10

Several challenges have been identified during the creation of phink

Details

▪ Fuzzing campaigns need initial seeds so that they do not solely
rely on random chance

▪ Creating initial seeds automatically is desirable

▪ ink! contracts run in a VM, preventing direct instrumentation
▪ Standard fuzzers struggle to track execution paths in sandboxed

environment

▪ Generating coverage reports is difficult but crucial for
optimizing fuzzing campaigns

▪ Limited visibility into how much of the contract is being tested

▪ Smart contracts interact with on-chain data and previous state
▪ Ensuring meaningful multi-call transactions during fuzzing is

complex

Initial seed
generation

Execution and
instrumentation
barriers

Coverage and
feedback
limitations

Stateful
execution and
on-chain
dependencies

Challenge

2

1

4

3

11

Coverage-guided fuzzing on VMs is challenging due to execution abstraction

Ink! compiler has constraints. Typically, code is instrumented
by compilers (e.g., afl-clang). Ink! uses its custom compiler,
which lacks native instrumentationInstrument-

ing ink!

Sandbox restrictions. The Wasm Virtual Machine operates in
a sandbox, making it challenging to pass information outside
of the VMPassing

through VM
Sandbox

Host OS

Wasm VM

Ink!
contract

AFL++

Coverage map

I

II I

II

Instrumentation requires support. A version of the ink!
compiler must be forked and maintained, or a PR submitted
to the ink! compiler, both requiring ongoing maintenance

Escape the sandbox to transmit coverage to AFL++. We need
a way to transmit coverage beyond the sandbox and store it in
AFL++'s coverage map

1

12

Academia has shown that selecting
appropriate initial seeds can significantly
impact the success of a fuzzing campaign

The manual creation of seeds is a time-
consuming process. Therefore, automating
this procedure is favourable

Impact of
Initial
Seeds

Manual
Seed
Generation

I

II

Creating effective initial seeds for a fuzzing campaign is difficult

To automatically generate fuzzing seeds,
we need to harness them from a reliable
source

Seeds
Harnessing
Source

III

An initial corpus covering more regions
yields higher coverage over time

!

2

13

Bootstrapping Smart Contract with stateful execution and on-chain dependencies

Contract requires on-chain state to work properly Contract might interact other deployed contracts

. . .
</>

Contract A

. . .
</>

Contract B

calls B’s foo()

. . .
</>

Contract C
. . .
</>

Contract

How do we ensure that the contract can interact with its
contract dependencies?

?How can we supply real-world state data to ensure the
contract functions properly?

I II

?

3

14

Coverage analysis is essential for discovering gaps in
your fuzzing campaign, for example, through a
misconfiguration

There are tools for generating coverage reports, but
what if you have your own coverage system?

OSS-Fuzz Coverage Report for cgif

Generating coverage reports is crucial to have a successful fuzzing campaign

The fuzzer hits this line only a few times; therefore,
some edge cases may still be untested

Has been hit almost as much as the function itself
and can be considered well covered

This line has not been hit, and either custom seeds
or adaptation to the corpus might be required

4

I

II

III

15

1. Overview

2. Background

3. Challenges

4. Solutions

5. Success

Agenda

16

Each challenge has been addressed with solutions that will now be detailed

Leverage tests for seed
generation

Custom instrumentation
and coverage mapping

On-chain contract
emulation and genesis state

Coverage reports

▪ Contract tests are leveraged to generate initial seeds
▪ This provides a fully automatic and reliable method for

generating initial seeds for the fuzzing campaign

▪ Phink solves instrumentation by injecting callbacks
into contracts. Those callbacks serve as a direct
communication from Phink to AFL++

▪ Phink’s tracking of every executed statement allows to
generate coverage reports which improve with
monitoring and assessment of fuzzing campaigns

▪ Phink enables developers to integrate ready-to-fuzz
contract dependencies and define a genesis state,
creating a rich execution environment for stateful
fuzzing

Generating initial seeds

Execution and
instrumentation barriers

Coverage and feedback
limitations

Stateful execution and on-
chain dependencies

Challenge Solution Details

2

1

4

3

B

A

D

C

Phink

Phink solves instrumentation via coverage remapping and message bridging

17

Custom instrumentation
and compilation helper
Parse smart contract code
using syn lib and inject
custom instrumentation,
then compile

fn foo() {
 ink::env::debug_println!(“1”)

let bytes = [0x4e,0x75,0x6c,0x6c,0x63,0x6f,0x6e];
 ink::env::debug_println!(“2”)

let string = String::from_utf8_lossy(&bytes);
 ink::env::debug_println!(“3”)

return;
}

Instrumented smart contract

Fuzz runner
Spawn AFL++
instrumented fuzz
coverage redirector and
update AFL++ shared
memory map utilizing a
message bridge

AFL++ instrumented

fn redirect_coverage(&self, wasm_cov: &[u64]) {
 ...
 if wasm_cov.contains(1) {
 redirect_edge_to_afl(1);
 }
 if wasm_cov.contains(2) {
 redirect_edge_to_afl(2);
 }
 ...
}

ink! WASM host
including message
bridge

I

II

Instrument Compile

Run

Coverage
Feedback

A

Rust-side
instrumented
smart contract
binary

Phink

Alternative approach: WASM blob instrumentation for resolving partial coverage & enabling
black-box fuzzing

18

Instrument the WASM
blob without source-code
Parse the WASM code,
search for control-flow
instructions and insert
callbacks

Fuzz runner
Spawn AFL++
instrumented fuzz
coverage redirector and
update AFL++ shared
memory map utilizing a
message bridge

AFL++ instrumented

fn redirect_coverage(&self, wasm_cov: &[u64]) {
 ...
 if wasm_cov.contains(1) {
 redirect_edge_to_afl(1);
 }
 if wasm_cov.contains(2) {
 redirect_edge_to_afl(2);
 }
 ...
}

I

II

Parse

Run

Coverage
Feedback

A

i32.const 117

i32.ne

if ;; label = @3

 local.get 6

i32.ne

 br_if 1 (;@2;)

 i32.const 66200

 call 16

end

Compiled WASM contract

Inject
callback

i32.const 117

i32.ne

i32.const 1000

i32.const 4

call 8

drop

if ;; label = @3

 local.get 6

i32.ne

 br_if 1 (;@2;)

 i32.const 66200

 call 16

end

Instrumented and compiled WASM
contract

ink! WASM host
including message
bridge

WASM-side
instrumented
smart contract
binary

19

Message structure

#[derive(Debug, Clone, Serialize)]
pub struct Message {
 origin: Origin,
 value_token: BalanceOf<Runtime>,
 payload: Vec<u8>,
}

selector

params

u128

u8

Phink defines a structured format for inputs, designed specifically for message executionB

Example Message 1

231 ****Bob send_to { account: 5D35…x}

Example Message N

420 ****Alice send_to { account: 5D35…x}

…

Multi-message structure example

Receive fuzzing input as bytes
array from AFL++

Parse the bytes into a
Message struct

Iterate over next Message if
the seed has a delimiter

Fuzzing
Input
Structure

Results in a Vector of
Message

1

2

3

4

For each #[ink(message)]

Grab arguments + function name

Prepare a snippet that SCALE-encode
the message selector + parameters

Insert that snippet at the beginning of
the message

20

#[ink(message)]
pub fn crash_with_invariant(&mut self, data: String) -> Result<()> {
{
 let sel = ExecutionInput::new(selector_bytes!("crash_with_invariant")))
 .push_arg(&data);

 let encoded = scale::Encode::encode(&sel);
 ink::env::debug_println!("ENCODED_SEED={}", encoded.iter()
 .map(|byte| format!("{:02x}", byte))
 .collect::<String>());
}
// Actual message logic below
if data.len() < 7 && data.len() > 3 {
 ...
 }
}
Ok(())
}

Message is tweaked to output the encoded seed when called

Contract tests are leveraged to generate initial seeds

Fork. Create copy of the existing
contract

Tweak. Insert our seed
extractor payload into each
message

Run. Execute all the tests
(unit, E2E…)

Export. Save all the seeds
into the corpus folder

Inserted snippet

Seed
creation

B

Tweak phase

21

$ cargo run -- generate-seed sample/dummy/

running 3 tests
test dummy::e2e_tests::it_works ... ok
test dummy::tests::for_seedgen ... ok
test dummy::tests::new_works ... ok

ENCODED_SEED=fa80c2f60474
ENCODED_SEED=fa80c2f60465

Writing bytes 0xfa80c2f60474 to
`output/phink/corpus/seedgen_0.bin`
Writing bytes 0xfa80c2f60465 to
`output/phink/corpus/seedgen_1.bin`

Tests are executed and saved as valid seeds

Seed

List of messages

Contract tests are leveraged to generate initial seeds

Fork. Create copy of the existing
contract

Tweak. Insert our seed
extractor payload into each
message

Run. Execute all the tests
(unit, E2E…)

Export. Save all the seeds
into the corpus folder

Seed
creation

0xfa80c2f60474

seedgen_0.bin

0xfa80c2f60465

seedgen_1.bin

0xfa80c2f60465
2a2a2a2a
fa80c2f60474

seedgen_2.bin

Corpus directory

...

seedgen_N.bin
Combining two
calls into one input
separated by
“****”

B

22

Contract tests are leveraged to generate initial seedsB

23

C Integrating other contracts and defining ”genesis” state can solve emulation constraints

Cross-contract calls

. . .
</>

A

. . .
</>

B

. . .
</>

C

1 Instrument every contract

2 Deploy every contract

3
Start fuzzing, the coverage of A, B and C will be
collected

1 2

B.bar()C.foo()

Mocking on-chain state

impl DevelopperPreferences for Preferences {
 fn runtime_storage() -> Storage {
 let storage = RuntimeGenesisConfig {
 balances: BalancesConfig {
 // Lot of money for Alice, Bob..
 balances: (0..u8::MAX)
 .map(|i| [i; 32].into())
 .map(|k| (k, 50000))
 .collect(),
 },
 }.build_storage()
 }
 ...
}

Developers can insert a mocked environment

0x00..001 (Alice)
Balance: 50000

0x00..002 (Bob)
Balance: 50000

0x00..003 (Charlie)
Balance: 50000

24

Coverage report sample

1 For each seed in corpus

2

Append the reached coverage into traces.cov3

Run them with the harness

Generating a .cov file

Copy the Rust files of the contract into HTML

2 Parse traces.cov

3 For each trace in traces.cov

4 Change the executed line’s color to green

Parsing and generating HTML

1

Phink tracks every executed statement and allows to generate coverage reports

Users can create coverage reports for their contract

I

II

D

25

Users can create coverage reports for their contractD

26

1. Overview

2. Background

3. Challenges

4. Solutions

5. Success

Agenda

27

AbaxFinance/dao-contracts

ink-examples/erc1155

ink-examples/multisig

1500/100

1300/140

1400/113

Seedgen Avg speed* Coverage percent (for the whole contract)

* First value is early phase; second value is late phase. Measured in executions per second, for 1 core

91

89

48

0 10 20 30 40 50 60 70 80 90 100

Corpus entries

1639

949

1524

Forkless fuzzer

Phink doesn’t need a fork of ink,
pallet_contract, substrate,
polkadot or cargo-contract

VM-agnostic

ink! contract compiled into
WASM or RISC-V (newly
supported) can be fuzzed by
Phink

Fully coverage guided

With in-WASM instrumentation,
the contract is fully
instrumented on every control-
flow

Blackbox fuzzing

Since Phink can instrument
compiled WASM blobs, source-
code is not required

Phink is now the industry standard fuzzer for ink! smart contracts

28

Thanks!

https://github.com/srlabs/phink

https://srlabs.github.io/phink/

https://github.com/srlabs/phink
https://srlabs.github.io/phink/

	Fuzzing Rust Smart-Contract
	Slide 1: Fuzzing Rust Smart Contracts Writing a bug printer engine from scratch
	Slide 2
	Slide 3: Nice to meet you
	Slide 4: Agenda
	Slide 5: Fuzzing identifies vulnerabilities via mutating valid program inputs
	Slide 6: Instrument the target by injecting callbacks to enable coverage-guided fuzzing
	Slide 7
	Slide 8
	Slide 9: Agenda
	Slide 10: Several challenges have been identified during the creation of phink
	Slide 11: Coverage-guided fuzzing on VMs is challenging due to execution abstraction
	Slide 12: Creating effective initial seeds for a fuzzing campaign is difficult
	Slide 13: Bootstrapping Smart Contract with stateful execution and on-chain dependencies
	Slide 14: Generating coverage reports is crucial to have a successful fuzzing campaign
	Slide 15: Agenda
	Slide 16: Each challenge has been addressed with solutions that will now be detailed
	Slide 17: Phink solves instrumentation via coverage remapping and message bridging
	Slide 18: Alternative approach: WASM blob instrumentation for resolving partial coverage & enabling black-box fuzzing
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Agenda
	Slide 27
	Slide 28

